Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555478

RESUMEN

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Asunto(s)
Lagartos , Animales , Masculino , Sintenía/genética , Lagartos/genética , Cromosomas Sexuales/genética , Cromosomas , Genoma , Cariotipo , Evolución Molecular
2.
Beilstein J Nanotechnol ; 15: 733-742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952415

RESUMEN

The evolution of a multilayer sample surface during focused ion beam processing was simulated using the level set method and experimentally studied by milling a silicon dioxide layer covering a crystalline silicon substrate. The simulation took into account the redeposition of atoms simultaneously sputtered from both layers of the sample as well as the influence of backscattered ions on the milling process. Monte Carlo simulations were applied to produce tabulated data on the angular distributions of sputtered atoms and backscattered ions. Two sets of test structures including narrow trenches and rectangular boxes with different aspect ratios were experimentally prepared, and their cross sections were visualized in scanning transmission electron microscopy images. The superimposition of the calculated structure profiles onto the images showed a satisfactory agreement between simulation and experimental results. In the case of boxes that were prepared with an asymmetric cross section, the simulation can accurately predict the depth and shape of the structures, but there is some inaccuracy in reproducing the form of the left sidewall of the structure with a large amount of the redeposited material. To further validate the developed simulation approach and gain a better understanding of the sputtering process, the distribution of oxygen atoms in the redeposited layer derived from the numerical data was compared with the corresponding elemental map acquired by energy-dispersive X-ray microanalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA