Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 78(6): 2175-90, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23343519

RESUMEN

Glucuronosyl diacylglycerides (GlcAGroAc2) are functionally important glycolipids and membrane anchors for cell wall lipoglycans in the Corynebacteria. Here we describe the complete synthesis of distinct acyl-isoforms of GlcAGroAc2 bearing both acylation patterns of (R)-tuberculostearic acid (C19:0) and palmitic acid (C16:0) and their mass spectral characterization. Collision-induced fragmentation mass spectrometry identified characteristic fragment ions that were used to develop "rules" allowing the assignment of the acylation pattern as C19:0 (sn-1), C16:0 (sn-2) in the natural product from Mycobacterium smegmatis, and the structural assignment of related C18:1 (sn-1), C16:0 (sn-2) GlcAGroAc2 glycolipids from M. smegmatis and Corynebacterium glutamicum. A synthetic hydrophobic octyl glucuronoside was used to characterize the GDP-mannose-dependent mannosyltransferase MgtA from C. glutamicum that extends GlcAGroAc2. This enzyme is an Mg(2+)/Mn(2+)-dependent metalloenzyme that undergoes dramatic activation upon reduction with dithiothreitol.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium/química , Glicéridos/análisis , Glicéridos/síntesis química , Glucolípidos/análisis , Glucolípidos/síntesis química , Magnesio/química , Manosiltransferasas/química , Mycobacterium smegmatis/química , Mycobacterium/química , Ácidos Esteáricos/química , Vías Biosintéticas , Glicéridos/química , Glucolípidos/química , Espectrometría de Masas
2.
J Biol Chem ; 286(34): 29893-903, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21712377

RESUMEN

Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.


Asunto(s)
Apicomplexa/metabolismo , Evolución Molecular , Galactolípidos/biosíntesis , Modelos Biológicos , Plastidios/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Apicomplexa/genética , Galactolípidos/genética , Datos de Secuencia Molecular , Plastidios/genética , Proteínas Protozoarias/genética
3.
Elife ; 112022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191376

RESUMEN

Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Macrólidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Combinación de Medicamentos , Insecticidas/administración & dosificación , Insecticidas/farmacología , Macrólidos/administración & dosificación
4.
Anal Chem ; 83(19): 7523-30, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21879760

RESUMEN

Primary and secondary amines, including amino acids, biogenic amines, hormones, neurotransmitters, and plant siderophores, are readily derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using easily performed experimental methodology. Complex mixtures of these amine derivatives can be fractionated and quantified using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Upon collision induced dissociation (CID) in a quadrupole collision cell, all derivatized compounds lose the aminoquinoline tag. With the use of untargeted fragmentation scan functions, such as precursor ion scanning, the loss of the aminoquinoline tag (Amq) can be monitored to identify derivatized species; and the use of targeted fragmentation scans, such as multiple reaction monitoring, can be exploited to quantitate amine-containing molecules. Further, with the use of accurate mass, charge state, and retention time, identification of unknown amines is facilitated. The stability of derivatized amines was found to be variable with oxidatively labile derivatives rapidly degrading. With the inclusion of antioxidant and reducing agents, tris(2-carboxyethyl)-phosphine (TCEP) and ascorbic acid, into both extraction solvents and reaction buffers, degradation was significantly decreased, allowing reproducible identification and quantification of amine compounds in large sample sets.


Asunto(s)
Aminas/análisis , Aminas/metabolismo , Estructura Molecular , Estereoisomerismo
5.
ACS Chem Biol ; 10(3): 734-46, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25427102

RESUMEN

Pathogenic species of Mycobacteria and Corynebacteria, including Mycobacterium tuberculosis and Corynebacterium diphtheriae, synthesize complex cell walls that are rich in very long-chain mycolic acids. These fatty acids are synthesized on the inner leaflet of the cell membrane and are subsequently transported to the periplasmic space as trehalose monomycolates (TMM), where they are conjugated to other cell wall components and to TMM to form trehalose dimycolates (TDM). Mycobacterial TMM, and the equivalent Corynebacterium glutamicum trehalose corynomycolates (TMCM), are transported across the inner membrane by MmpL3, or NCgl0228 and NCgl2769, respectively, although little is known about how this process is regulated. Here, we show that transient acetylation of the mycolyl moiety of TMCM is required for periplasmic export. A bioinformatic search identified a gene in a cell wall biosynthesis locus encoding a putative acetyltransferase (M. tuberculosis Rv0228/C. glutamicum NCgl2759) that was highly conserved in all sequenced Corynebacterineae. Deletion of C. glutamicum NCgl2759 resulted in the accumulation of TMCM, with a concomitant reduction in surface transport of this glycolipid and syntheses of cell wall trehalose dicorynomycolates. Strikingly, loss of NCgl2759 was associated with a defect in the synthesis of a minor, and previously uncharacterized, glycolipid species. This lipid was identified as trehalose monoacetylcorynomycolate (AcTMCM) by mass spectrometry and chemical synthesis of the authentic standard. The in vitro synthesis of AcTMCM was dependent on acetyl-CoA, whereas in vivo [(14)C]-acetate pulse-chase labeling showed that this lipid was rapidly synthesized and turned over in wild-type and genetically complemented bacterial strains. Significantly, the biochemical and TMCM/TDCM transport phenotype observed in the ΔNCgl2759 mutant was phenocopied by inhibition of the activities of the two C. glutamicum MmpL3 homologues. Collectively, these data suggest that NCgl2759 is a novel TMCM mycolyl acetyltransferase (TmaT) that regulates transport of TMCM and is a potential drug target in pathogenic species.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Proteínas de Transporte de Membrana/química , Ácidos Micólicos/metabolismo , Trehalosa/metabolismo , Acetilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Secuencia de Carbohidratos , Membrana Celular/enzimología , Membrana Celular/genética , Pared Celular/enzimología , Pared Celular/genética , Factores Cordón/metabolismo , Corynebacterium glutamicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA