Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 453(7199): 1258-61, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18480754

RESUMEN

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.


Asunto(s)
Farmacorresistencia Viral , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Mutación/genética , Neuraminidasa/química , Neuraminidasa/genética , Oseltamivir/farmacología , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Cinética , Modelos Moleculares , Conformación Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/metabolismo , Unión Proteica , Zanamivir/farmacología
2.
J Virol ; 86(23): 13095-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993153

RESUMEN

Conserved tryptophan-187 facilitates homodimerization of the influenza A virus NS1 protein effector domain. We generated a mutant influenza virus strain expressing NS1-W187R to destabilize this self-interaction. NS1-W187R protein exhibited lower double-stranded RNA (dsRNA)-binding activity, showed a temporal redistribution during infection, and was minimally compromised for interferon antagonism. The mutant virus replicated similarly to the wild type in vitro, but it was slightly attenuated for replication in mice, causing notably reduced morbidity and mortality. These data suggest biological relevance for the W187-mediated homotypic interaction of NS1.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Modelos Moleculares , Proteínas no Estructurales Virales/química , Replicación Viral/fisiología , Animales , Western Blotting , Dimerización , Perros , Técnica del Anticuerpo Fluorescente Indirecta , Subtipo H1N1 del Virus de la Influenza A/fisiología , Luciferasas , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Mutación Missense/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(5): 1954-9, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133840

RESUMEN

Seasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers. Here, we present a 2.3-A resolution crystal structure of the NS1 effector domain in complex with the inter-SH2 (coiled-coil) domain of p85beta, a regulatory subunit of PI3K. Our data emphasize the remarkable isoform specificity of this interaction, and provide insights into the mechanism by which NS1 activates the PI3K (p85beta:p110) holoenzyme. A model of the NS1:PI3K heterotrimeric complex reveals that NS1 uses the coiled-coil as a structural tether to sterically prevent normal inhibitory contacts between the N-terminal SH2 domain of p85beta and the p110 catalytic subunit. Furthermore, in this model, NS1 makes extensive contacts with the C2/kinase domains of p110, and a small acidic alpha-helix of NS1 sits adjacent to the highly basic activation loop of the enzyme. During infection, a recombinant influenza A virus expressing NS1 with charge-disruption mutations in this acidic alpha-helix is unable to stimulate the production of phosphatidylinositol 3,4,5-trisphosphate or the phosphorylation of Akt. Despite this, the charge-disruption mutations in NS1 do not affect its ability to interact with the p85beta inter-SH2 domain in vitro. Overall, these data suggest that both direct binding of NS1 to p85beta (resulting in repositioning of the N-terminal SH2 domain) and possible NS1:p110 contacts contribute to PI3K activation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Secuencia de Bases , Dominio Catalítico , Bovinos , Línea Celular , Cristalografía por Rayos X , Cartilla de ADN/genética , Perros , Activación Enzimática , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Dominios Homologos src
4.
Org Biomol Chem ; 10(43): 8628-39, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22976385

RESUMEN

Novel 3-C-alkylated-Neu5Ac2en derivatives have been designed to target the expanded active site cavity of influenza virus sialidases with an open 150-loop, currently seen in X-ray crystal structures of influenza A virus group-1 (N1, N4, N5, N8), but not group-2 (N2, N9), sialidases. The compounds show selectivity for inhibition of H5N1 and pdm09 H1N1 sialidases over an N2 sialidase, providing evidence of the relative 150-loop flexibility of these sialidases. In a complex with N8 sialidase, the C3 substituent of 3-phenylally-Neu5Ac2en occupies the 150-cavity while the central ring and the remaining substituents bind the active site as seen for the unsubstituted template. This new class of inhibitors, which can 'trap' the open 150-loop form of the sialidase, should prove useful as probes of 150-loop flexibility.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/enzimología , Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidasa/antagonistas & inhibidores , Alquilación , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Ácido N-Acetilneuramínico/síntesis química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa/metabolismo , Docilidad/efectos de los fármacos , Relación Estructura-Actividad
5.
Nature ; 443(7107): 45-9, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16915235

RESUMEN

The worldwide spread of H5N1 avian influenza has raised concerns that this virus might acquire the ability to pass readily among humans and cause a pandemic. Two anti-influenza drugs currently being used to treat infected patients are oseltamivir (Tamiflu) and zanamivir (Relenza), both of which target the neuraminidase enzyme of the virus. Reports of the emergence of drug resistance make the development of new anti-influenza molecules a priority. Neuraminidases from influenza type A viruses form two genetically distinct groups: group-1 contains the N1 neuraminidase of the H5N1 avian virus and group-2 contains the N2 and N9 enzymes used for the structure-based design of current drugs. Here we show by X-ray crystallography that these two groups are structurally distinct. Group-1 neuraminidases contain a cavity adjacent to their active sites that closes on ligand binding. Our analysis suggests that it may be possible to exploit the size and location of the group-1 cavity to develop new anti-influenza drugs.


Asunto(s)
Antivirales/química , Diseño de Fármacos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Gripe Aviar/tratamiento farmacológico , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Acetamidas/metabolismo , Acetamidas/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Aves/virología , Farmacorresistencia Viral/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/virología , Modelos Moleculares , Mutación/genética , Neuraminidasa/clasificación , Neuraminidasa/genética , Oseltamivir , Conformación Proteica
6.
Nature ; 444(7117): 378-82, 2006 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17108965

RESUMEN

H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Mutación/genética , Receptores Virales/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/química , Aves de Corral , Receptores Virales/química
7.
Proc Natl Acad Sci U S A ; 106(40): 17175-80, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19805083

RESUMEN

The viruses that caused the three influenza pandemics of the twentieth century in 1918, 1957, and 1968 had distinct hemagglutinin receptor binding glycoproteins that had evolved the capacity to recognize human cell receptors. We have determined the structure of the H2 hemagglutinin from the second pandemic, the "Asian Influenza" of 1957. We compare it with the 1918 "Spanish Influenza" hemagglutinin, H1, and the 1968 "Hong Kong Influenza" hemagglutinin, H3, and show that despite its close overall structural similarity to H1, and its more distant relationship to H3, the H2 receptor binding site is closely related to that of H3 hemagglutinin. By analyzing hemagglutinins of potential H2 avian precursors of the pandemic virus, we show that the human receptor can be bound by avian hemagglutinins that lack the human-specific mutations of H2 and H3 pandemic viruses, Gln-226Leu, and Gly-228Ser. We show how Gln-226 in the avian H2 receptor binding site, together with Asn-186, form hydrogen bond networks through bound water molecules to mediate binding to human receptor. We show that the human receptor adopts a very similar conformation in both human and avian hemagglutinin-receptor complexes. We also show that Leu-226 in the receptor binding site of human virus hemagglutinins creates a hydrophobic environment near the Sia-1-Gal-2 glycosidic linkage that favors binding of the human receptor and is unfavorable for avian receptor binding. We consider the significance for the development of pandemics, of the existence of avian viruses that can bind to both avian and human receptors.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Virus de la Influenza A/metabolismo , Gripe Humana/virología , Estructura Secundaria de Proteína , Animales , Asia/epidemiología , Sitios de Unión/genética , Aves , Cristalografía por Rayos X , Brotes de Enfermedades , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Hong Kong/epidemiología , Humanos , Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/epidemiología , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/química , Receptores Virales/metabolismo , España/epidemiología
8.
Antimicrob Agents Chemother ; 55(6): 2942-52, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21422222

RESUMEN

Neuraminidase (NA) inhibitors (NIs) are the first line of defense against influenza virus. Reverse genetics experiments allow the study of resistance mechanisms by anticipating the impacts of mutations to the virus. To look at the possibility of an increased effect on the resistance phenotype of a combination of framework mutations, known to confer resistance to oseltamivir or zanamivir, with limited effect on virus fitness, we constructed 4 viruses by reverse genetics in the A/Moscow/10/99 H3N2 background containing double mutations in their neuraminidase genes: E119D+I222L, E119V+I222L, D198N+I222L, and H274Y+I222L (N2 numbering). Among the viruses produced, the E119D+I222L mutant virus was not able to grow without bacterial NA complementation and the D198N+I222L mutant and H274Y+I222L mutant were not stable after passages in MDCK cells. The E119V+I222L mutant was stable after five passages in MDCK cells. This E119V-and-I222L combination had a combinatorial effect on oseltamivir resistance. The total NA activity of the E119V+I222L mutant was low (5% compared to that of the wild-type virus). This drop in NA activity resulted from a decreased NA quantity in the virion in comparison to that of the wild-type virus (1.4% of that of the wild type). In MDCK-SIAT1 cells, the E119V+I222L mutant virus did not present a replicative advantage over the wild-type virus, even in the presence of oseltamivir. Double mutations combining two framework mutations in the NA gene still have to be monitored, as they could induce a high level of resistance to NIs, without impairing the NA affinity. Our study allows a better understanding of the diversity of the mechanisms of resistance to NIs.


Asunto(s)
Antivirales/farmacología , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Mutación , Neuraminidasa/genética , Oseltamivir/farmacología , Animales , Sitios de Unión , Células Cultivadas , Perros , Farmacorresistencia Viral , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Virión/enzimología
9.
Artículo en Inglés | MEDLINE | ID: mdl-21821881

RESUMEN

The effector domain (ED) of the influenza virus virulence factor NS1 is capable of interaction with a variety of cellular and viral targets, although regulation of these events is poorly understood. Introduction of a W187A mutation into the ED abolishes dimer formation; however, strand-strand interactions between mutant NS1 ED monomers have been observed in two previous crystal forms. A new condition for crystallization of this protein [0.1 M Bis-Tris pH 6.0, 0.2 M NaCl, 22%(w/v) PEG 3350, 20 mM xylitol] was discovered using the hanging-drop vapour-diffusion method. Diffraction data extending to 1.8 Šresolution were collected from a crystal grown in the presence of 40 mM thieno[2,3-b]pyridin-2-ylmethanol. It was observed that there is conservation of the strand-strand interface in crystals of this monomeric NS1 ED in three different space groups. This observation, coupled with conformational changes in the interface region, suggests a potential role for ß-sheet augmentation in NS1 function.


Asunto(s)
Orthomyxoviridae/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
Proc Natl Acad Sci U S A ; 105(46): 17736-41, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004788

RESUMEN

The influenza surface glycoprotein hemagglutinin (HA) is a potential target for antiviral drugs because of its key roles in the initial stages of infection: receptor binding and the fusion of virus and cell membranes. The structure of HA in complex with a known inhibitor of membrane fusion and virus infectivity, tert-butyl hydroquinone (TBHQ), shows that the inhibitor binds in a hydrophobic pocket formed at an interface between HA monomers. Occupation of this site by TBHQ stabilizes the neutral pH structure through intersubunit and intrasubunit interactions that presumably inhibit the conformational rearrangements required for membrane fusion. The nature of the binding site suggests routes for the chemical modification of TBHQ that could lead to the development of more potent inhibitors of membrane fusion and potential anti-influenza drugs.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hidroquinonas/química , Hidroquinonas/farmacología , Fusión de Membrana/efectos de los fármacos , Sitios de Unión , Fluorometría , Concentración de Iones de Hidrógeno/efectos de los fármacos , Filogenia , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Especificidad por Sustrato/efectos de los fármacos
11.
Trends Microbiol ; 16(4): 149-57, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18375125

RESUMEN

Sialic acids (Sias) are regarded as receptors for influenza viruses and are usually bound to galactose (Gal) in an alpha2-3 or alpha2-6 configuration. The detection of these Sia configurations in tissues has commonly been through the use of plant lectins that are able to identify which cells contain Siaalpha2-3- and Siaalpha2-6-linked glycans, although other techniques for receptor distribution have been used. Initial experiments indicated that avian versus human influenza virus binding was determined by either Siaalpha2-6 or Siaalpha2-3 expression. In this review, we suggest that the distribution and detection of these terminal Siaalpha2-3- and Siaalpha2-6-linked receptors within the respiratory tract might not be as clear cut as has been reported. We will also review how other viral and receptor components might act as determinants for successful viral replication and transmission. Understanding these additional components is important in comprehending the infection and the transmission of both existing human influenza viruses and newly emerging avian influenza viruses.


Asunto(s)
Virus de la Influenza A/metabolismo , Receptores Virales/metabolismo , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Modelos Moleculares , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Virales/química , Receptores Virales/genética , Porcinos
12.
J Virol ; 82(13): 6337-48, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18417593

RESUMEN

During membrane fusion, the influenza A virus hemagglutinin (HA) adopts an extended helical structure that contains the viral transmembrane and fusion peptide domains at the same end of the molecule. The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show that the region flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect to requirements for the folding of native HAs and length restrictions for membrane fusion activity.


Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Virales de Fusión/metabolismo , Animales , Línea Celular , ADN Complementario/genética , Perros , Fluoresceínas , Células HeLa , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Mutación/genética , Pliegue de Proteína
13.
J Virol ; 82(10): 5079-83, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18353965

RESUMEN

The replicative properties of influenza virus hemagglutinin (HA) mutants with altered receptor binding characteristics were analyzed following intranasal inoculation of mice. Among the mutants examined was a virus containing a Y98F substitution at a conserved position in the receptor binding site that leads to a 20-fold reduction in binding. This mutant can replicate as well as wild-type (WT) virus in MDCK cells and in embryonated chicken eggs but is highly attenuated in mice, exhibiting titers in lungs more than 1,000-fold lower than those of the WT. The capacity of the Y98F mutant to induce antibody responses and the structural locations of HA reversion mutations are examined.


Asunto(s)
Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Mutación Missense , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sustitución de Aminoácidos/genética , Animales , Anticuerpos Antivirales/sangre , Sitios de Unión , Peso Corporal , Línea Celular , Embrión de Pollo , Perros , Pruebas de Inhibición de Hemaglutinación , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Estructura Terciaria de Proteína , Virulencia , Replicación Viral/fisiología
14.
Chem Biol ; 13(2): 129-38, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16492561

RESUMEN

The X-ray crystal structures for the complexes of three designer antibiotics, compounds 1, 2, and 3, bound to two models for the ribosomal aminoacyl-tRNA site (A site) at 2.5-3.0 Angstroms resolution and that of neamine at 2.8 Angstroms resolution are described. Furthermore, the complex of antibiotic 1 bound to the A site in the entire 30S ribosomal subunit of Thermus thermophilus is reported at 3.8 Angstroms resolution. Molecular dynamics simulations revealed that the designer compounds provide additional stability to bases A1492 and A1493 in their extrahelical forms. Snapshots from the simulations were used for free energy calculations, which revealed that van der Waals and hydrophobic effects were the driving forces behind the binding of designer antibiotic 3 when compared to the parental neamine.


Asunto(s)
Antibacterianos/química , ARN Bacteriano/genética , Aminoacil-ARN de Transferencia/química , Thermus thermophilus/genética , Cristalografía por Rayos X , Conformación de Ácido Nucleico
15.
Nucleic Acids Res ; 33(17): 5677-90, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16214802

RESUMEN

The crystal structures of six complexes between aminoglycoside antibiotics (neamine, gentamicin C1A, kanamycin A, ribostamycin, lividomycin A and neomycin B) and oligonucleotides containing the decoding A site of bacterial ribosomes are reported at resolutions between 2.2 and 3.0 A. Although the number of contacts between the RNA and the aminoglycosides varies between 20 and 31, up to eight direct hydrogen bonds between rings I and II of the neamine moiety are conserved in the observed complexes. The puckered sugar ring I is inserted into the A site helix by stacking against G1491 and forms a pseudo base pair with two H-bonds to the Watson-Crick sites of the universally conserved A1408. This central interaction helps to maintain A1492 and A1493 in a bulged-out conformation. All these structures of the minimal A site RNA complexed to various aminoglycosides display crystal packings with intermolecular contacts between the bulging A1492 and A1493 and the shallow/minor groove of Watson-Crick pairs in a neighbouring helix. In one crystal, one empty A site is observed. In two crystals, two aminoglycosides are bound to the same A site with one bound specifically and the other bound in various ways in the deep/major groove at the edge of the A sites.


Asunto(s)
Aminoglicósidos/química , Antibacterianos/química , Modelos Moleculares , Oligorribonucleótidos/química , ARN Ribosómico 16S/química , Adenina/química , Anticodón/química , Secuencia de Bases , Sitios de Unión , Codón/química , Cristalografía por Rayos X , Framicetina/química , Gentamicinas/química , Kanamicina/química , Paromomicina/análogos & derivados , Paromomicina/química , Ribosomas/química , Ribostamicina/química
16.
Biochimie ; 88(8): 1027-31, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16806634

RESUMEN

Amikacin is the 4,6-linked aminoglycoside modified at position N1 of the 2-deoxystreptamine ring (ring II) by the L-haba group. In the present study, the crystal structure of a complex between oligonucleotide containing the bacterial ribosomal A site and amikacin has been solved at 2.7 A resolution. Amikacin specifically binds to the A site in practically the same way as its parent compound kanamycin. In addition, the L-haba group interacts with the upper side of the A site through two direct contacts, O2*...H-N4(C1496) and N4*-H...O6(G1497). The present crystal structure shows how the introduction of the L-haba group on ring II of aminoglycoside is an effective mutation for obtaining a higher affinity to the bacterial A site.


Asunto(s)
Amicacina/química , Oligonucleótidos/química , ARN Ribosómico 16S/química , Amicacina/farmacología , Sitios de Unión/genética , Cristalografía por Rayos X/métodos , Modelos Moleculares , Conformación de Ácido Nucleico/efectos de los fármacos , Oligonucleótidos/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
18.
Sci Rep ; 3: 2871, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24129600

RESUMEN

The influenza virus neuraminidase (NA) is essential for the virus life cycle. The rise of resistance mutations against current antiviral therapies has increased the need for the development of novel inhibitors. Recent efforts have targeted a cavity adjacent to the catalytic site (the 150-cavity) in addition to the primary catalytic subsite in order to increase specificity and reduce the likelihood of resistance. This study details structural and in vitro analyses of a class of inhibitors that bind uniquely in both subsites. Crystal structures of three inhibitors show occupation of the 150-cavity in two distinct and novel binding modes. We believe these are the first nanomolar inhibitors of NA to be characterized in this way. Furthermore, we show that one inhibitor, binding within the catalytic site, offers reduced susceptibility to known resistance mutations via increased flexibility of a pendant pentyloxy group and the ability to pivot about a strong hydrogen-bonding network.


Asunto(s)
Antivirales/química , Inhibidores Enzimáticos/química , Virus de la Influenza A/enzimología , Neuraminidasa/química , Proteínas Virales/química , Animales , Antivirales/metabolismo , Antivirales/farmacología , Dominio Catalítico , Línea Celular , Farmacorresistencia Viral , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Virus de la Influenza A/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Oseltamivir/química , Oseltamivir/farmacología , Unión Proteica , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo
19.
J Med Chem ; 55(20): 8963-8, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23017008

RESUMEN

A series of C3 O-functionalized 2-acetamido-2-deoxy-Δ4-ß-D-glucuronides were synthesized to explore noncharge interactions in subsite 2 of the influenza virus sialidase active site. In complex with A/N8 sialidase, the parent compound (C3 OH) inverts its solution conformation to bind with all substituents well positioned in the active site. The parent compound inhibits influenza virus sialidase at a sub-µM level; the introduction of small alkyl substituents or an acetyl group at C3 is also tolerated.


Asunto(s)
Acetamidas/química , Antivirales/química , Glucurónidos/química , Neuraminidasa/química , Orthomyxoviridae/enzimología , Acetamidas/síntesis química , Dominio Catalítico , Pruebas de Enzimas , Fluorometría , Glucurónidos/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Electricidad Estática , Relación Estructura-Actividad
20.
PLoS One ; 6(3): e17946, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21464929

RESUMEN

Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins.


Asunto(s)
Virus de la Influenza A/metabolismo , Modelos Biológicos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Biología Computacional , Secuencia Conservada , Cristalografía por Rayos X , Perros , Humanos , Interferón beta/genética , Proteínas Mutantes/química , Mutación/genética , Docilidad , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA