Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 189: 106567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364877

RESUMEN

Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.


Asunto(s)
Ascaris suum , Humanos , Ratones , Animales , Ascaris suum/genética , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Programas Informáticos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Heliyon ; 10(14): e33739, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108859

RESUMEN

Alveolar macrophages (AM) and monocytes (MO) are myeloid cells that play a substantial role in the development and establishment of the innate and adaptive immune response. These cells are crucial for host defense against various pathogens, but their role in malaria is poorly understood. Here, we characterize the dynamics of AMs and recruited leukocytes subpopulations in the airways during experimental Plasmodium berghei NK65-NY (PbNK65). We show that PbNK65 infection induces an increased pulmonary vascular permeability that provides Ly6Clow MOs, neutrophils (NEU), CD4+ and CD8+ lymphocytes in the airways. This inflammatory environment resulted in an increase in the population and alteration of the activation state of the AMs. Taken together, the data presented provide new insights into airway inflammation associated with pulmonary malaria.

3.
Mem. Inst. Oswaldo Cruz ; 118: e220144, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430845

RESUMEN

BACKGROUND The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can infect common mice inducing significant pathological lung lesions and inflammatory responses. This substantially mimics coronavirus disease 19 (COVID-19) infection and pathogenesis in humans. OBJECTIVES To characterise the effects of recombinant SARS-CoV-2 S1 receptor-binding domain (RBD) peptide in murine macrophage and microglial cells' immune activation compared with classical PAMPs in vitro. METHODS Murine RAW 264.7 macrophages and BV2 microglial cells were exposed to increasing concentrations of the RBD peptide (0.01, 0.05, and 0.1 µg/mL), Lipopolysaccharide (LPS) and Poly(I:C) and evaluated after two and 24 h for significant markers of macrophage activation. We determined the effects of RBD peptide on cell viability, cleaved caspase 3 expressions, and nuclear morphometry analysis. FINDINGS In RAW cells, RBD peptide was cytotoxic, but not for BV2 cells. RAW cells presented increased arginase activity and IL-10 production; however, BV2 cells expressed iNOS and IL-6 after RBD peptide exposure. In addition, RAW cells increased cleaved-caspase-3, apoptosis, and mitotic catastrophe after RBD peptide stimulation but not BV2 cells. CONCLUSION RBD peptide exposure has different effects depending on the cell line, exposure time, and concentration. This study brings new evidence about the immunogenic profile of RBD in macrophage and microglial cells, advancing the understanding of SARS-Cov2 immuno- and neuropathology.

4.
Braz. J. Pharm. Sci. (Online) ; 58: e201089, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1420429

RESUMEN

Abstract Protease-activated receptors (PARs) are metabotropic G-protein-coupled receptors that are activated via proteolytic cleavage of a specific sequence of amino acids in their N-terminal region. PAR2 has been implicated in mediating allergic airway inflammation. This study aims to study the effect of PAR2 antagonist ENMD1068in lung inflammation and airway remodeling in experimental asthma. Allergic lung inflammation was induced in sensitized BALB/c mice through intranasal instillations of ovalbumin (OVA), and mice were pretreated with ENMD1068 1 hour before each OVA challenge. Bronchoalveolar lavage fluid (BALF) was collected, and the lungs were removed at different time intervals after OVA challenge to analyze inflammation, airway remodeling and airway hyperresponsiveness. Ovalbumin promoted leukocyte infiltration into BALF in a PAR2-dependent manner. ENMD1068 impaired eosinophil peroxidase (EPO) and myeloperoxidase (MPO) activity in the lung parenchyma into BALF and reduced the loss of dynamic pulmonary compliance, lung resistance in response to methacholine, mucus production, collagen deposition and chemokine (C-C motif) ligand 5 expression compared to those in OVA-challenged mice. We propose that proteases released after an allergen challenge may be crucial to the development of allergic asthma in mice, and PAR2 blockade may be useful as a new pharmacological approach for the treatment of airway allergic diseases.


Asunto(s)
Animales , Femenino , Ratones , Neumonía/patología , Receptor PAR-2/antagonistas & inhibidores , Receptores Proteinasa-Activados/antagonistas & inhibidores , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA