Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Semin Cell Dev Biol ; 118: 94-106, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144893

RESUMEN

Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.


Asunto(s)
Miocitos Cardíacos/metabolismo , Diferenciación Celular , Humanos , Transducción de Señal
2.
PLoS Genet ; 15(5): e1008165, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31091225

RESUMEN

Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors.


Asunto(s)
Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Función Ventricular/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/fisiología , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Organogénesis , Proteínas Represoras/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Función Ventricular/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(45): E10615-E10624, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352852

RESUMEN

Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.


Asunto(s)
Evolución Molecular , Corazón/embriología , Pulmón/embriología , Proteínas de Dominio T Box/genética , Proteína wnt2/genética , Animales , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Ratones , Ratones Mutantes , Transducción de Señal , Transcripción Genética , Pez Cebra/embriología
4.
Dev Biol ; 434(1): 7-14, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157563

RESUMEN

Determination of appropriate chamber size is critical for normal vertebrate heart development. Although Nr2f transcription factors promote atrial maintenance and differentiation, how they determine atrial size remains unclear. Here, we demonstrate that zebrafish Nr2f1a is expressed in differentiating atrial cardiomyocytes. Zebrafish nr2f1a mutants have smaller atria due to a specific reduction in atrial cardiomyocyte (AC) number, suggesting it has similar requirements to Nr2f2 in mammals. Furthermore, the smaller atria in nr2f1a mutants are derived from distinct mechanisms that perturb AC differentiation at the chamber poles. At the venous pole, Nr2f1a enhances the rate of AC differentiation. Nr2f1a also establishes the atrial-atrioventricular canal (AVC) border through promoting the differentiation of mature ACs. Without Nr2f1a, AVC markers are expanded into the atrium, resulting in enlarged endocardial cushions (ECs). Inhibition of Bmp signaling can restore EC development, but not AC number, suggesting that Nr2f1a concomitantly coordinates atrial and AVC size through both Bmp-dependent and independent mechanisms. These findings provide insight into conserved functions of Nr2f proteins and the etiology of atrioventricular septal defects (AVSDs) associated with NR2F2 mutations in humans.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Defectos del Tabique Interatrial/embriología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas de Unión al ADN/genética , Atrios Cardíacos/embriología , Atrios Cardíacos/patología , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/patología , Humanos , Miocitos Cardíacos/patología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
PLoS Biol ; 14(11): e2000504, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27893754

RESUMEN

Although retinoic acid (RA) teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT) malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF) progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs), and second, a loss of first heart field (FHF) ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a) expression and positively regulates matrix metalloproteinase 9 (mmp9) expression. Although restoring Fibroblast growth factor (FGF) signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP) function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity.


Asunto(s)
Familia 26 del Citocromo P450/metabolismo , Ventrículos Cardíacos/enzimología , Miocardio/enzimología , Pez Cebra/embriología , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Metaloproteinasas de la Matriz/metabolismo
6.
Development ; 141(8): 1638-48, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24667328

RESUMEN

Normal heart development requires appropriate levels of retinoic acid (RA) signaling. RA levels in embryos are dampened by Cyp26 enzymes, which metabolize RA into easily degraded derivatives. Loss of Cyp26 function in humans is associated with numerous developmental syndromes that include cardiovascular defects. Although previous studies have shown that Cyp26-deficient vertebrate models also have cardiovascular defects, the mechanisms underlying these defects are not understood. Here, we found that in zebrafish, two Cyp26 enzymes, Cyp26a1 and Cyp26c1, are expressed in the anterior lateral plate mesoderm (ALPM) and predominantly overlap with vascular progenitors (VPs). Although singular knockdown of Cyp26a1 or Cyp26c1 does not overtly affect cardiovascular development, double Cyp26a1 and Cyp26c1 (referred to here as Cyp26)-deficient embryos have increased atrial cells and reduced cranial vasculature cells. Examining the ALPM using lineage tracing indicated that in Cyp26-deficient embryos the myocardial progenitor field contains excess atrial progenitors and is shifted anteriorly into a region that normally solely gives rise to VPs. Although Cyp26 expression partially overlaps with VPs in the ALPM, we found that Cyp26 enzymes largely act cell non-autonomously to promote appropriate cardiovascular development. Our results suggest that localized expression of Cyp26 enzymes cell non-autonomously defines the boundaries between the cardiac and VP fields within the ALPM through regulating RA levels, which ensures a proper balance of myocardial and endothelial lineages. Our study provides novel insight into the earliest consequences of Cyp26 deficiency that underlie cardiovascular malformations in vertebrate embryos.


Asunto(s)
Vasos Sanguíneos/citología , Linaje de la Célula , Sistema Enzimático del Citocromo P-450/metabolismo , Mesodermo/citología , Mesodermo/enzimología , Miocardio/citología , Proteínas de Pez Cebra/metabolismo , Animales , Biomarcadores/metabolismo , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/deficiencia , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Atrios Cardíacos/citología , Mesodermo/irrigación sanguínea , Mesodermo/efectos de los fármacos , Ácido Retinoico 4-Hidroxilasa , Cráneo/irrigación sanguínea , Cráneo/efectos de los fármacos , Cráneo/embriología , Células Madre/citología , Células Madre/metabolismo , Tretinoina/farmacología , Pez Cebra , Proteínas de Pez Cebra/deficiencia
7.
PLoS Genet ; 9(8): e1003689, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990796

RESUMEN

Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.


Asunto(s)
Receptores de Ácido Retinoico/genética , Transducción de Señal , Teratogénesis/genética , Tretinoina/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Enzimático del Citocromo P-450/metabolismo , Embrión no Mamífero , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Receptores de Ácido Retinoico/deficiencia , Ácido Retinoico 4-Hidroxilasa , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra
8.
Elife ; 102021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34643182

RESUMEN

The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing CP evolution and birth defects.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/embriología , Pulmón/embriología , Retinal-Deshidrogenasa/genética , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Secuencia de Bases , Mesodermo/embriología , Ratones , Retinal-Deshidrogenasa/metabolismo , Alineación de Secuencia , Proteínas de Dominio T Box/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA