Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191066

RESUMEN

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Asunto(s)
G-Cuádruplex , Neoplasias , Fotoquimioterapia , Animales , ADN/metabolismo , Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo , Fármacos Fotosensibilizantes/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Fotoquimioterapia/métodos
2.
ChemSusChem ; : e202400903, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867402

RESUMEN

The sulfoxide moiety is one of the most commonly utilized groups in pharmaceutical and industrial chemistry. The need for sustainability and easy accessibility to sulfoxide moieties is deemed necessary, due to its ubiquity in natural products and potentially pharmaceutically active compounds. In this context, we report herein a sustainable, aerobic and environmentally friendly photochemical protocol based on the use of a benzothioxathene imide as the photocatalyst to selectively oxidise sulfides under mild irradiation (456 nm), in very low catalyst loading (0.01 mol%) and on water. In addition, to demonstrate the compatibility of our protocol with wide scope of substrates, the latter was successfully applied to the synthesis of the biologically-active Sulforaphane and Modafinil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA