RESUMEN
The archaeological record shows that typically human cultural traits emerged at different times, in different parts of the world, and among different hominin taxa. This pattern suggests that their emergence is the outcome of complex and nonlinear evolutionary trajectories, influenced by environmental, demographic, and social factors, that need to be understood and traced at regional scales. The application of predictive algorithms using archaeological and paleoenvironmental data allows one to estimate the ecological niches occupied by past human populations and identify niche changes through time, thus providing the possibility of investigating relationships between cultural innovations and possible niche shifts. By using such methods to examine two key southern Africa archaeological cultures, the Still Bay [76-71 thousand years before present (ka)] and the Howiesons Poort (HP; 66-59 ka), we identify a niche shift characterized by a significant expansion in the breadth of the HP ecological niche. This expansion is coincident with aridification occurring across Marine Isotope Stage 4 (ca. 72-60 ka) and especially pronounced at 60 ka. We argue that this niche shift was made possible by the development of a flexible technological system, reliant on composite tools and cultural transmission strategies based more on "product copying" rather than "process copying." These results counter the one niche/one human taxon equation. They indicate that what makes our cultures, and probably the cultures of other members of our lineage, unique is their flexibility and ability to produce innovations that allow a population to shift its ecological niche.
RESUMEN
Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.
Asunto(s)
Ecosistema , Incendios , Fósiles , Suelo , NamibiaRESUMEN
The end of the Middle Pleistocene Transition (MPT, ~ 800-670 thousand years before present, ka) was characterised by the emergence of large glacial ice-sheets associated with anomalously warm North Atlantic sea surface temperatures enhancing moisture production. Still, the direction and intensity of moisture transport across Eurasia towards potential ice-sheets is poorly constrained. To reconstruct late MPT moisture production and dispersal, we combine records of upper ocean temperature and pollen-based Mediterranean forest cover, a tracer of westerlies and precipitation, from a subtropical drill-core collected off South-West Iberia, with records of East Asia summer monsoon (EASM) strength and West Pacific surface temperatures, and model simulations. Here we show that south-western European winter precipitation and EASM strength reached high levels during the Marine Isotope Stage 18 glacial. This anomalous situation was caused by nearly-continuous moisture supply from both oceans and its transport to higher latitudes through the westerlies, likely fuelling the accelerated expansion of northern hemisphere ice-sheets during the late MPT.
RESUMEN
The traditional concept of long and gradual, glacial-interglacial climate changes during the Quaternary has been challenged since the 1980s. High temporal resolution analysis of marine, terrestrial and ice geological archives has identified rapid, millennial- to centennial-scale, and large-amplitude climatic cycles throughout the last few million years. These changes were global but have had contrasting regional impacts on the terrestrial and marine ecosystems, with in some cases strong changes in the high latitudes of both hemispheres but muted changes elsewhere. Such a regionalization has produced environmental barriers and corridors that have probably triggered niche contractions/expansions of hominin populations living in Eurasia and Africa. This article reviews the long- and short-timescale ecosystem changes that have punctuated the last few million years, paying particular attention to the environments of the last 650,000 years, which have witnessed key events in the evolution of our lineage in Africa and Eurasia. This review highlights, for the first time, a contemporaneity between the split between Denisovan and Neanderthals, at ~650-400 ka, and the strong Eurasian ice-sheet expansion down to the Black Sea. This ice expansion could form an ice barrier between Europe and Asia that may have triggered the genetic drift between these two populations.
RESUMEN
Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.
Asunto(s)
Cambio Climático , Agua de Mar , Movimientos del Agua , Océano Atlántico , Mar Mediterráneo , PaleontologíaRESUMEN
BACKGROUND: It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans. METHODOLOGY/PRINCIPAL FINDINGS: Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP). CONCLUSIONS/SIGNIFICANCE: Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia.
Asunto(s)
Evolución Biológica , Conservación de los Recursos Naturales/métodos , Ecosistema , Incendios , África , Animales , Arqueología , Asia Sudoriental , Australia , Biomasa , Carbón Orgánico/análisis , Clima , Europa (Continente) , Hominidae , Humanos , Factores de TiempoRESUMEN
BACKGROUND: Despite a long history of investigation, considerable debate revolves around whether Neanderthals became extinct because of climate change or competition with anatomically modern humans (AMH). METHODOLOGY/PRINCIPAL FINDINGS: We apply a new methodology integrating archaeological and chronological data with high-resolution paleoclimatic simulations to define eco-cultural niches associated with Neanderthal and AMH adaptive systems during alternating cold and mild phases of Marine Isotope Stage 3. Our results indicate that Neanderthals and AMH exploited similar niches, and may have continued to do so in the absence of contact. CONCLUSIONS/SIGNIFICANCE: The southerly contraction of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate change or a change in adaptation, but rather concurrent AMH geographic expansion appears to have produced competition that led to Neanderthal extinction.