Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Nature ; 547(7661): 109-113, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658205

RESUMEN

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Complejos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosilmetionina Descarboxilasa/inmunología , Animales , Proliferación Celular , Activación Enzimática , Everolimus/uso terapéutico , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Estabilidad Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
3.
J Proteome Res ; 19(6): 2419-2428, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380831

RESUMEN

Prostate cancer is the second most common tumor and the fifth cause of cancer-related death among men worldwide. PC cells exhibit profound signaling and metabolic reprogramming that account for the acquisition of aggressive features. Although the metabolic understanding of this disease has increased in recent years, the analysis of such alterations through noninvasive methodologies in biofluids remains limited. Here, we used NMR-based metabolomics on a large cohort of urine samples (more than 650) from PC and benign prostate hyperplasia (BPH) patients to investigate the molecular basis of this disease. Multivariate analysis failed to distinguish between the two classes, highlighting the modest impact of prostate alterations on urine composition and the multifactorial nature of PC. However, univariate analysis of urine metabolites unveiled significant changes, discriminating PC from BPH. Metabolites with altered abundance in urine from PC patients revealed changes in pathways related to cancer biology, including glycolysis and the urea cycle. We found out that metabolites from such pathways were diminished in the urine from PC individuals, strongly supporting the notion that PC reduces nitrogen and carbon waste in order to maximize their usage in anabolic processes that support cancer cell growth.


Asunto(s)
Nitrógeno , Neoplasias de la Próstata , Carbono , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/diagnóstico , Espectroscopía de Protones por Resonancia Magnética
4.
Methods ; 77-78: 25-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25697760

RESUMEN

Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.


Asunto(s)
Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/biosíntesis , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/biosíntesis , Animales , Humanos , Masculino , Ratones , Mutación/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Supresoras de Tumor/genética
5.
Oncogenesis ; 11(1): 10, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197445

RESUMEN

Glycine N-Methyltransferase (GNMT) is a metabolic enzyme that integrates metabolism and epigenetic regulation. The product of GNMT, sarcosine, has been proposed as a prostate cancer biomarker. This enzyme is predominantly expressed in the liver, brain, pancreas, and prostate tissue, where it exhibits distinct regulation. Whereas genetic alterations in GNMT have been associated to prostate cancer risk, its causal contribution to the development of this disease is limited to cell line-based studies and correlative human analyses. Here we integrate human studies, genetic mouse modeling, and cellular systems to characterize the regulation and function of GNMT in prostate cancer. We report that this enzyme is repressed upon activation of the oncogenic Phosphoinositide-3-kinase (PI3K) pathway, which adds complexity to its reported dependency on androgen signaling. Importantly, we demonstrate that expression of GNMT is required for the onset of invasive prostate cancer in a genetic mouse model. Altogether, our results provide further support of the heavy oncogenic signal-dependent regulation of GNMT in prostate cancer.

6.
J Extracell Vesicles ; 7(1): 1470442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760869

RESUMEN

Urine contains extracellular vesicles (EVs) that concentrate molecules and protect them from degradation. Thus, isolation and characterisation of urinary EVs could increase the efficiency of biomarker discovery. We have previously identified proteins and RNAs with differential abundance in urinary EVs from prostate cancer (PCa) patients compared to benign prostate hyperplasia (BPH). Here, we focused on the analysis of the metabolites contained in urinary EVs collected from patients with PCa and BPH. Targeted metabolomics analysis of EVs was performed by ultra-high-performance liquid chromatography-mass spectrometry. The correlation between metabolites and clinical parameters was studied, and metabolites with differential abundance in PCa urinary EVs were detected and mapped into cellular pathways. We detected 248 metabolites belonging to different chemical families including amino acids and various lipid species. Among these metabolites, 76 exhibited significant differential abundance between PCa and BPH. Interestingly, urine EVs recapitulated many of the metabolic alterations reported in PCa, including phosphathidylcholines, acyl carnitines, citrate and kynurenine. Importantly, we found elevated levels of the steroid hormone, 3beta-hydroxyandros-5-en-17-one-3-sulphate (dehydroepiandrosterone sulphate) in PCa urinary EVs, in line with the potential elevation of androgen synthesis in this type of cancer. This work supports urinary EVs as a non-invasive source to infer metabolic changes in PCa.

7.
Cancer Res ; 78(2): 399-409, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187400

RESUMEN

The nuclear receptor PPAR-ß/δ (PPARD) has essential roles in fatty acid catabolism and energy homeostasis as well as cell differentiation, inflammation, and metabolism. However, its contributions to tumorigenesis are uncertain and have been disputed. Here, we provide evidence of tumor suppressive activity of PPARD in prostate cancer through a noncanonical and ligand-independent pathway. PPARD was downregulated in prostate cancer specimens. In murine prostate epithelium, PPARD gene deletion resulted in increased cellularity. Genetic modulation of PPARD in human prostate cancer cell lines validated the tumor suppressive activity of this gene in vitro and in vivo Mechanistically, PPARD exerted its activity in a DNA binding-dependent and ligand-independent manner. We identified a novel set of genes repressed by PPARD that failed to respond to ligand-mediated activation. Among these genes, we observed robust regulation of the secretory trefoil factor family (TFF) members, including a causal and correlative association of TFF1 with prostate cancer biology in vitro and in patient specimens. Overall, our results illuminate the oncosuppressive function of PPARD and understanding of the pathogenic molecular pathways elicited by this nuclear receptor.Significance: These findings challenge the presumption that the function of the nuclear receptor PPARß/δ in cancer is dictated by ligand-mediated activation. Cancer Res; 78(2); 399-409. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , PPAR delta/metabolismo , Neoplasias de la Próstata/patología , Factor Trefoil-1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Regulación hacia Abajo , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , PPAR delta/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factor Trefoil-1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancers (Basel) ; 8(12)2016 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-27973407

RESUMEN

Urine extracellular vesicles are a valuable low-invasive source of information, especially for the cells of the genitourinary tract. In the search for biomarkers, different techniques have been developed to isolate and characterize the cargo of these vesicles. In the present work, we compare five of these different isolation methods (three commercial isolation kits, ultracentrifugation, and lectin-based purification) and perform miRNA profiling using a multiplex miRNA assay. The results showed high correlation through all isolation techniques, and 48 out of 68 miRNAs were detected above the detection limit at least 10 times. The results obtained by multiplex assay were validated through Taqman qPCR. In addition, using this technique combined with a clinically friendly extracellular vesicle (uEV)-enrichment method, we performed the analysis of selected miRNAs in urine from patients affected with bladder cancer, benign prostate hyperplasia, or prostate cancer. Importantly, we found that those miRNAs could be detected in almost 100% of the samples, and no significant differences were observed between groups. Our results support the feasibility of analyzing exosomes-associated miRNAs using a methodology that requires a small volume of urine and is compatible with a clinical environment and high-throughput analysis.

10.
J Extracell Vesicles ; 5: 29497, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895490

RESUMEN

Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs.

11.
Oncotarget ; 7(6): 6835-46, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26771841

RESUMEN

Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Cadherinas/genética , Cadherinas/orina , Vesículas Extracelulares/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/orina , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Neoplasias de la Próstata/patología
12.
Nat Commun ; 7: 12595, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553708

RESUMEN

Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.


Asunto(s)
Neoplasias de la Mama/secundario , Neoplasias de la Mama/terapia , Proteína de la Leucemia Promielocítica/antagonistas & inhibidores , Proteína de la Leucemia Promielocítica/metabolismo , Animales , Trióxido de Arsénico , Arsenicales/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica/genética , Óxidos/farmacología , Regiones Promotoras Genéticas , Proteína de la Leucemia Promielocítica/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Cell Biol ; 18(6): 645-656, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27214280

RESUMEN

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


Asunto(s)
Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Metástasis de la Neoplasia/patología , Neoplasias de la Próstata/patología , Receptores de Estrógenos/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA