Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Transl Med ; 22(1): 750, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123229

RESUMEN

BACKGROUND: ERAP2 is an aminopeptidase involved in antigen processing and presentation, and harbor genetic variants linked to several inflammatory diseases such as Inflammatory Bowel Disease (IBD). The lack of an ERAP2 gene homologue in mice has hampered functional studies, and most human studies have focused on cells of hematopoietic origin. Using an IBD biobank as vantage point, this study explores how genetic variation in ERAP2 affects gene expression in human-derived epithelial organoids upon proinflammatory stimulation. METHODS: An IBD patient cohort was genotyped with regards to two single nucleotide polymorphisms (SNP) (rs2910686/rs2248374) associated with ERAP2 expression levels, and we examined the correlation between colon gene expression and genotype, specifically aiming to establish a relationship with ERAP2 expression proficiency. Human-derived colon organoids (colonoids) with known ERAP2 genotype were established and used to explore differences in whole genome gene expression between ERAP2-deficient (n = 4) and -proficient (n = 4) donors upon pro-inflammatory encounter. RESULTS: When taking rs2910686 genotype into account, ERAP2 gene expression is upregulated in the inflamed colon of IBD patients. Colonoids upregulate ERAP2 upon IFNÉ£ stimulation, and ERAP2 expression proficiency is dependent on rs2910686 genotype. Colonoid genotyping confirms that mechanisms independent of the frequently studied SNP rs2248374 can cause ERAP2-deficiency. A total of 586 genes involved in various molecular mechanisms are differentially expressed between ERAP2 proficient- and deficient colonoids upon proinflammatory stimulation, including genes encoding proteins with the following molecular function: catalytic activity (AOC1, CPE, ANPEP and MEP1A), regulator activity (TNFSF9, MDK, GDF15, ILR6A, LGALS3 and FLNA), transmembrane transporter activity (SLC40A1 and SLC5A1), and extracellular matrix structural constituents (FGL2, HMCN2, and MUC17). CONCLUSIONS: ERAP2 is upregulated in the inflamed IBD colon mucosa, and expression proficiency is highly correlated with genotype of rs2910686. While the SNP rs2248374 is commonly used to determine ERAP2 expressional proficiency, our data confirms that mechanisms independent of this SNP can lead to ERAP2 deficiency. Our data demonstrates that epithelial ERAP2 presence affects the inflammatory response in colonoids, suggesting a pleiotropic role of ERAP2 beyond MHC class I antigen processing.


Asunto(s)
Aminopeptidasas , Colon , Inflamación , Enfermedades Inflamatorias del Intestino , Polimorfismo de Nucleótido Simple , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Polimorfismo de Nucleótido Simple/genética , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Inflamación/genética , Inflamación/patología , Colon/patología , Colon/metabolismo , Organoides/metabolismo , Genotipo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Femenino , Masculino , Estudios de Cohortes , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Epiteliales/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G761-G768, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32967429

RESUMEN

Serotonin is a highly conserved and ubiquitous signaling molecule involved in a vast variety of biological processes. A majority of serotonin is produced in the gastrointestinal epithelium, where it is suggested to act as a prominent regulatory molecule in the inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis (UC). Extracellular and circulating serotonin levels are thought to be elevated during intestinal inflammation, but the underlying mechanisms have been poorly understood. The data on human material are limited, contradictory, and in need of further investigation and substantiating. In this study, we show a potent and significant downregulation of the dominant serotonin reuptake transporter (SERT) mRNA (SLC6A4) in the epithelium from active CD ileitis, CD colitis, and UC colitis, compared with healthy controls. The mRNA of tryptophan hydroxylase 1, the rate-limiting enzyme in serotonin synthesis, was unregulated. Immunohistochemistry showed expression of the SERT protein in both the epithelium and the lamina propria and localized the downregulation to the epithelial monolayer. Laser capture microdissection followed by RNA sequencing confirmed downregulation of SLC6A4 in the epithelial monolayer during intestinal inflammation. Patient-derived colon epithelial cell lines (colonoids) incubated with the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) reduced SERT expression. In summary, these results show that intestinal inflammation potently reduces the expression of SERT in both CD and UC and that TNF-α alone is sufficient to induce a similar reduction in colonoids. The reduced serotonin reuptake capacity may contribute to the increased interstitial serotonin level associated with intestinal inflammation.NEW & NOTEWORTHY The serotonin reuptake transporter is potently reduced in inflamed areas of Crohn's ileitis, Crohn's colitis, and ulcerative colitis. The changes are localized to the intestinal epithelium and can be induced by TNF-α. The serotonin synthesis through tryptophan hydroxylase 1 is unchanged. This regulation is suggested as a mechanism underlying the increased extracellular serotonin levels associated with intestinal inflammation.


Asunto(s)
Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/biosíntesis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adolescente , Adulto , Anciano , Colon/citología , Colon/patología , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Triptófano Hidroxilasa/biosíntesis , Triptófano Hidroxilasa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
4.
PLoS One ; 17(3): e0265189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275975

RESUMEN

In recent years it has become apparent that the epithelium is highly involved in inflammatory bowel disease (IBD) pathophysiology. The majority of gene expression studies of IBD are generated from heterogeneous biopsies, providing no distinction between immune cells, the epithelium and other mucosal cells. By using laser capture microdissection (LCM) coupled with RNA sequencing, we aimed to characterize the expressional changes of the isolated colonic epithelial monolayer from ulcerative colitis (UC) and Crohn's disease (CD) patients compared to healthy controls (HC). The analysis identified 3706 genes as differentially expressed between active IBD epithelium and HC. Weighted gene co-expression network analysis was used to stratify genes into modules, which were subsequently characterized using enrichment analysis. Our data show a distinct upregulation of the antigen presentation machinery during inflammation, including major histocompatibility complex class II molecules (e.g. HLA-DPA1, HLA-DPB1, HLA-DRA) and key transcription factors/activators (STAT1, IRF1, CIITA). We also see an epithelial downregulation of retinoic acid-responsive nuclear receptors (RARA, RARB, RXRA), but upregulation of retinoid-metabolizing enzymes (RDH11, ALDH1A2, ALDH1A3), which together suggest a perturbation of epithelial vitamin A signaling during active IBD. Lastly, we identified a cluster of stress-related genes, including activator protein 1 components JUNB and ATF3, as significantly upregulated in active UC but not in CD, revealing an interesting aspect of IBD heterogeneity. The results represent a unique resource for enhanced understanding of epithelial involvement in IBD inflammation and is a valuable tool for further studies on these processes.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Colitis Ulcerosa/metabolismo , Colon/patología , Enfermedad de Crohn/patología , Expresión Génica , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo
5.
DNA Repair (Amst) ; 73: 164-169, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30579708

RESUMEN

Non-homologous end joining (NHEJ) is a DNA repair pathway that senses, processes and ligates DNA double-strand breaks (DSBs) throughout the cell cycle. During NHEJ, core Ku70 and Ku80 subunits bind DSBs as a heterodimer and promote further recruitment of accessory factors (e.g., PAXX, Mri, DNA-PKcs, Artemis) and downstream core subunits XRCC4 and DNA ligase 4 (Lig4). Inactivation of Ku70 or Ku80 genes in mice results in immunodeficiency and high levels of genomic instability; deletion of individual Dna-pkcs, Xlf, Paxx or Mri genes results in viable mice with no or modest DNA repair defects. However, combined inactivation of either Xlf and Dna-pkcs, or Xlf and Paxx, or Xlf and Mri, leads to synthetic lethality in mice, which correlates with increased levels of apoptosis in the central nervous system. Here, we demonstrated that inactivation of pro-apoptotic factor Trp53 rescues embryonic lethality of Xlf-/-Paxx-/- and Xlf-/-Dna-pkcs-/- double knockout mice. Moreover, combined inactivation of Paxx and Dna-pkcs results in live-born fertile Paxx-/-Dna-pkcs-/- mice indistinguishable from Dna-pkcs-/- knockout controls.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Silenciador del Gen , Mutaciones Letales Sintéticas , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética
6.
FEBS Open Bio ; 8(3): 426-434, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29511619

RESUMEN

DNA repair consists of several cellular pathways which recognize and repair damaged DNA. The classical nonhomologous DNA end-joining (NHEJ) pathway repairs double-strand breaks in DNA. It is required for maturation of both B and T lymphocytes by supporting V(D)J recombination as well as B-cell differentiation during class switch recombination (CSR). Inactivation of NHEJ factors Ku70, Ku80, XRCC4, DNA ligase 4, DNA-PKcs, and Artemis impairs V(D)J recombination and blocks lymphocyte development. Paralogue of XRCC4 and XLF (PAXX) is an accessory NHEJ factor that has a significant impact on the repair of DNA lesions induced by ionizing radiation in human, murine, and chicken cells. However, the role of PAXX during development is poorly understood. To determine the physiological role of PAXX, we deleted part of the Paxx promoter and the first two exons in mice. Further, we compared Paxx-knockout mice with wild-type (WT) and NHEJ-deficient controls including Ku80- and Dna-pkcs-null and severe combined immunodeficiency mice. Surprisingly, Paxx-deficient mice were not distinguishable from the WT littermates; they were the same weight and size, fertility status, had normal spleen, thymus, and bone marrow. Paxx-deficient mice had the same number of chromosomal and chromatid breaks as WT mice. Moreover, Paxx-deficient primary B lymphocytes had the same level of CSR as lymphocytes isolated from WT mice. We concluded that PAXX is dispensable for normal mouse development.

7.
FEBS Open Bio ; 8(3): 442-448, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29511621

RESUMEN

To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T lymphocytes through its function in V(D)J recombination and class switch recombination (CSR). NHEJ consists of several core and accessory factors, including Ku70, Ku80, XRCC4, DNA ligase 4, DNA-PKcs, Artemis, and XLF. Paralog of XRCC4 and XLF (PAXX) is the recently described accessory NHEJ factor that structurally resembles XRCC4 and XLF and interacts with Ku70/Ku80. To determine the physiological role of PAXX in mammalian cells, we purchased and characterized a set of custom-generated and commercially available NHEJ-deficient human haploid HAP1 cells, PAXXΔ, XRCC4Δ , and XLFΔ . In our studies, HAP1 PAXXΔ cells demonstrated modest sensitivity to DNA damage, which was comparable to wild-type controls. By contrast, XRCC4Δ and XLFΔ HAP1 cells possessed significant DNA repair defects measured as sensitivity to double-strand break inducing agents and chromosomal breaks. To investigate the role of PAXX in CSR, we generated and characterized Paxx-/- and Aid-/- murine lymphoid CH12F3 cells. CSR to IgA was nearly at wild-type levels in the Paxx-/- cells and completely ablated in the absence of activation-induced cytidine deaminase (AID). In addition, Paxx-/- CH12F3 cells were hypersensitive to zeocin when compared to wild-type controls. We concluded that Paxx-deficient mammalian cells maintain robust NHEJ and CSR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA