Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 55(16): 11125-11132, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34324805

RESUMEN

Substances classified as unknown or variable composition, complex reaction products or biological origin (UVCB) present a challenge for environmental hazard and risk assessment. Here, we present a novel approach for whole-substance bioconcentration testing applied to cedarwood oil-an essential oil composed of volatile, hydrophobic organic chemicals. The method yields whole-body elimination rate constants for a mixture of constituents. Our approach combines in vivo dietary fish exposure with internal benchmarking and headspace solid-phase microextraction (HS-SPME) equilibrium sampling followed by suspect-screening analysis. We quantified depuration rate constants of 13 individual cedarwood oil constituents based on relative peak areas using gas chromatography (GC) coupled with Orbitrap-mass spectrometry (MS) and GC triple-quadrupole (QqQ)-MS. For seven constituents with available analytical standards, we compared the rate constants to the results obtained from solvent extraction, clean-up, and targeted GC-MS analysis. The HS-SPME sampling approach allowed for automated sample extraction and analyte enrichment while minimizing evaporative losses of the volatile target analytes and reducing matrix interferences from low-volatility organics. The suspect-screening analysis enabled the quantification of constituents without available analytical standards, while the internal benchmarking significantly reduced variability from differences in delivered dose and analytical variability between the samples.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Animales , Benchmarking , Cromatografía de Gases y Espectrometría de Masas , Cinética , Compuestos Orgánicos Volátiles/análisis
2.
Environ Sci Technol ; 55(1): 304-312, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33305563

RESUMEN

Eleven organophosphate esters (OPEs) were detected in surface water and sediment samples from yearly sampling (2013-2018) in the Canadian Arctic. In water samples, ∑chlorinated-OPEs (Cl-OPEs) concentrations exceeded ∑non-chlorinated-OPEs (non-Cl-OPEs) with median concentrations of 10 ng L-1 and 1.3 ng L-1, respectively. In sediment samples, ∑Cl-OPEs and ∑nonchlorinated-OPEs had median concentrations of 4.5 and 2.5 ng g-1, respectively. High concentrations of OPEs in samples from the Mackenzie River plume suggest riverine discharge as an OPE source to the Canadian Arctic. The prevalence of OPEs at other sites is consistent with long-range transport. The OPE inventory of the Canadian Arctic Ocean representative of years 2013-2018 was estimated at 450-16,000 tonnes with a median ∑11OPE mass of 4100 tonnes with >99% of the OPE inventory estimated to be in the water column. These results highlight the importance of OPEs as water-based Arctic contaminants subject to long-range transport and local sources. The high OPE inventory in the water column of the Canadian Arctic Ocean points to the need for international regulatory mechanisms for persistent and mobile organic contaminants (PMOCs) that are not covered by the risk assessment criteria of the Stockholm Convention.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Regiones Árticas , Canadá , China , Ésteres , Océanos y Mares , Organofosfatos/análisis
3.
Environ Sci Technol ; 50(13): 6644-51, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27144674

RESUMEN

Gas-particle partitioning is one of the key factors that affect the environmental fate of semivolatile organic chemicals. Many organophosphate esters (OPEs) have been reported to primarily partition to particles in the atmosphere. However, because of the wide range of their physicochemical properties, it is unlikely that OPEs are mainly in the particle phase "as a class". We compared gas-particle partitioning predictions for 32 OPEs made by the commonly used OECD POV and LRTP Screening Tool ("the Tool") with the partitioning models of Junge-Pankow (J-P) and Harner-Bidleman (H-B), as well as recently measured data on OPE gas-particle partitioning. The results indicate that half of the tested OPEs partition into the gas phase. Partitioning into the gas phase seems to be determined by an octanol-air partition coefficient (log KOA) < 10 and a subcooled liquid vapor pressure (log PL) > -5 (PL in Pa), as well as the total suspended particle concentration (TSP) in the sampling area. The uncertainty of the physicochemical property data of the OPEs did not change this estimate. Furthermore, the predictions by the Tool, J-P- and H-B-models agreed with recently measured OPE gas-particle partitioning.


Asunto(s)
Contaminantes Atmosféricos , Ésteres , Atmósfera/química , Modelos Teóricos , Organofosfatos
4.
Environ Sci Technol ; 50(14): 7409-15, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27309668

RESUMEN

Fourteen organophosphate esters (OPEs) were measured in the filter fraction of 117 active air samples from yearly ship-based sampling campaigns (2007-2013) and two land-based stations in the Canadian Arctic, to assess trends and long-range transport potential of OPEs. Four OPEs were detected in up to 97% of the samples, seven in 50% or less of the samples, and three were not detected. Median concentrations of ∑OPEs were 237 and 50 pg m(-3) for ship- and land-based samples, respectively. Individual median concentrations ranged from below detection to 119 pg m(-3) for ethanol, 2-chloro-, phosphate (3:1) (TCEP). High concentrations of up to 2340 pg m(-3) were observed for Tri-n-butyl phosphate (TnBP) at a land-based sampling location in Resolute Bay from 2012, whereas it was only detected in one ship-based sample at a concentration below 100 pg m(-3). Concentrations of halogenated OPEs seemed to be driven by river discharge from the Nelson and Churchill Rivers (Manitoba) and Churchill River and Lake Melville (Newfoundland and Labrador). In contrast, nonhalogenated OPE concentrations appeared to have diffuse sources or local sources close to the land-based sampling stations. Triphenyl phosphate (TPhP) showed an apparent temporal trend with a doubling-time of 11 months (p = 0.044). The results emphasize the increasing relevance of halogenated and nonhalogenated OPEs as contaminants in the Arctic.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Canadá , Organofosfatos , Ríos
5.
Environ Sci Technol ; 50(23): 12678-12685, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27791360

RESUMEN

Chemical pollution is hypothesized to be one of the factors driving the strong decline of the critically endangered European eel population. Specifically, the impact of contaminants on the quality of spawning eels and subsequent embryo survival and development has been discussed as crucial investigation point. However, so far, only very limited information on potential negative effects of contaminants on the reproduction of eels is available. Through the combination of nontargeted ultrahigh-resolution mass spectrometry and multidimensional gas chromatography, combined with more-conventional targeted analytical approaches and multimedia mass-balance modeling, compounds of particular relevance, and their maternal transfer in artificially matured European eels from the German river Ems have been identified. Substituted diphenylamines were, unexpectedly, found to be the primary organic contaminants in the eel samples, with concentrations in the µg g-1 wet weight range. Furthermore, it could be shown that these contaminants, as well as polychlorinated biphenyls (PCBs), organochlorine pesticides, and polyaromatic hydrocarbons (PAHs), are not merely stored in lipid rich tissue of eels but maternally transferred into gonads and eggs. The results of this study provide unique information on both the fate and behavior of substituted diphenylamines in the environment as well as their relevance as contaminants in European eels.


Asunto(s)
Difenilamina , Análisis de Fourier , Ciclotrones , Cromatografía de Gases y Espectrometría de Masas , Plaguicidas , Bifenilos Policlorados , Contaminantes Químicos del Agua
6.
Ecotoxicology ; 25(1): 41-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26477019

RESUMEN

The stock of European Eel (Anguilla anguilla L.) has reached an all-time low in 2011. Spawner quality of mature eels in terms of health status and fitness is considered one of the key elements for successful migration and reproduction. Dioxin-like Polychlorinated Biphenyls (dl-PCBs) are known persistent organic pollutants potentially affecting the reproductive capability and health status of eels throughout their entire lifetime. In this study, muscle tissue samples of 192 European eels of all continental life stages from 6 different water bodies and 13 sampling sites were analyzed for contamination with lipophilic dl-PCBs to investigate the potential relevance of the respective habitat in light of eel stock management. Results of this study reveal habitat-dependent and life history stage-related accumulation of targeted PCBs. Sum concentrations of targeted PCBs differed significantly between life stages and inter-habitat variability in dl-PCB levels and -profiles was observed. Among all investigated life stages, migrant silver eels were found to be the most suitable life history stage to represent their particular water system due to habitat dwell-time and their terminal contamination status. With reference to a possible negative impact of dl-PCBs on health and the reproductive capability of eels, it was hypothesized that those growing up in less polluted habitats have a better chance to produce healthy offspring than those growing up in highly polluted habitats. We suggest that the contamination status of water systems is fundamental for the life cycle of eels and needs to be considered in stock management and restocking programs.


Asunto(s)
Anguilla/fisiología , Exposición a Riesgos Ambientales , Explotaciones Pesqueras , Bifenilos Policlorados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Monitoreo del Ambiente , Francia , Masculino
7.
Environ Res ; 140: 569-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26037108

RESUMEN

53 brominated and chlorinated flame retardants were investigated in sediment samples from the German rivers Elbe and Weser, the German Bight, Jadebusen, East Frisian Coast as well as the UK East coast. The aim of the presented study was to investigate the prevalence of different halogenated flame retardant groups as contaminants in North Sea sediments, identify determining factors for the distribution and levels as well as to identify area specific fingerprints that could help identify sources. In order to do that a fast and effective ASE extraction method with an on-line clean-up was developed as well as a GC-EI-MSMS and LC-ESI-MSMS method to analyse PBDEs, MeOBDEs, alternate BFRs, Dechloranes as well as TBBPA and HBCDD. A fingerprinting method was adopted to identify representative area-specific patterns based on detection frequency as well as concentrations of individual compounds. Concentrations in general were low, with<1 ng g(-1) dw for most compounds. Exceptions were the comparably high concentrations of BDE-209 with up to 7 ng g(-1) dw in selected samples and TBBPA in UK samples with 2.7±1.5 ng g(-1) dw. Apart from BDE-209 and TBBPA, alternate BFRs and Dechloranes were predominant in all analysed samples, displaying the increasing relevance of these compounds as environmental contaminants.


Asunto(s)
Bromo/química , Retardadores de Llama/análisis , Sedimentos Geológicos/química , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Límite de Detección , Espectrometría de Masas/métodos , Mar del Norte , Control de Calidad
8.
Sci Total Environ ; 946: 173884, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885719

RESUMEN

Soft plastic lures (SPLs) are commonly used artificial lures in recreational angling. Anglers regularly lose SPLs while fishing and there is little knowledge about the environmental impacts of lost SPLs. As with other plastic items, SPLs contain phthalates and other persistent additives that may leach into water. In this study, 16 randomly chosen SPLs of common models were analyzed for the leaching of persistent, water-soluble plastic additives, including phthalates. The estrogenicity of sample extracts from a subsample of 10 SPLs was assessed using luciferase reporter gene bioassays. Over a period of 61 days, 10 of the 16 SPLs leached the targeted phthalates dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DnBP) at median detectable concentrations ranging from 10 ng/g sample BBP to a median of 1001 ng/g DMP as well as 45 persistent, mobile, and toxic (PMT) plastic additives. DEP was detected most frequently in 8 SPLs, followed by BBP (2 SPLs), DMP (2 SPLs) and DnBP (1 SPL). The extract from one SPL with comparatively low phthalate and PMT plastic additive levels was active in the bioassay, indicating high endocrine-disruptive potential, presumably due to unknown additives that were not among the target substances of the methodology used in this study. The study was supplemented by a mail survey among anglers, in which attitudes of anglers towards SPLs were investigated. The survey indicated that SPL loss is a common event during angling. Most participants were concerned about potential ecological impacts of SPLs, wanted the ingredients of SPLs to be labelled and supported legal restrictions concerning toxic ingredients of SPLs. The study shows that SPLs are a potential source of environmental pollution, may pose human health risks and need further investigation, considering the frequent use of SPLs in recreational angling.

9.
Environ Pollut ; 335: 122263, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499969

RESUMEN

Plastic additives are a diverse group of chemical compounds added to plastic products to give them their unique physical-chemical properties. Persistent, mobile, and toxic (PMT) plastic additives are a highly polar, environmentally stable sub-group of plastic additives with a variety of uses in plastic products. Due to their mobility into water, they can pose a significant long-term risk to the aquatic environment. Despite the potential threat, PMT plastic additives remain largely unregulated and under-studied. Notably, there is a need for dedicated analytical methodology and leaching studies to determine their potential emission from plastic products. Here we present an optimized leaching protocol and novel instrumental analysis method for the screening of 124 PMT plastic additives registered for use in Canada using high performance liquid chromatography with quantitative time-of-flight mass spectrometry (HPLC-QToF-MS). The analytical method covered a log Kow/Dow range between 0.21 and 6.02, which covered 72% of the PMT plastic additives used in Canada. A total of 52 PMT plastic additive suspects were leached in the optimization experiments, 44 of which were unique based on accurate mass and retention time. The conditions that resulted in the greatest numbers of PMT plastic additives leached were lake water, UV light exposure, and a timeframe of approximately 30 days. The analytical and leaching methods presented here offer new tools to study PMT plastic additives and assess their leaching in an environmentally relevant matrix, which can inform monitoring, threat assessment, and regulatory efforts moving forward.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Agua
10.
ACS Omega ; 8(48): 45606-45615, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075767

RESUMEN

Mutations in the unique ATP-binding cassette anion channel, the cystic fibrosis conductance regulator (CFTR), lead to the inherited fatal disease known as cystic fibrosis (CF). Ivacaftor enhances channel gating of CFTR by stabilizing its open state and has been approved as monotherapy for CF patients with CFTR gating mutations (e.g., G551D) and as part of combination therapy with lumacaftor for CFTR folding mutations (e.g., ΔF508). However, in the latter context, ivacaftor may destabilize folding-rescued ΔF508-CFTR and membrane-associated proteins and attenuate lumacaftor pharmacotherapy. Here, we tested the hypothesis that the high lipophilicity of ivacaftor may contribute to this effect. We describe the synthesis of three glutamic acid ivacaftor derivatives with reduced lipophilicity that bear different charges at neutral pH (compounds 2, 3, 4). In a cellular ion flux assay, all three restored G551D-CFTR channel activity at comparable or better levels than ivacaftor. Furthermore, unlike ivacaftor, compound 3 did not attenuate levels of folding-rescued ΔF508 at the cell surface. Molecular modeling predicts that the increased polarity of compound 3 allows engagement with polar amino acids present in the binding pocket with hydrogen bonding and ionic interactions, which are collectively higher in strength as compared to hydrophobic interactions that stabilize ivacaftor. Overall, the data suggests that reduced lipophilicity may improve the efficacy of this class of CFTR potentiators when used for folding-rescued ΔF508-CFTR.

11.
Chemosphere ; 327: 138530, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001758

RESUMEN

Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Regiones Antárticas , Regiones Árticas , Clima Frío , Contaminantes Ambientales/análisis , Contaminación Ambiental/prevención & control , Medición de Riesgo
12.
Environ Sci Process Impacts ; 24(8): 1133-1143, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35670229

RESUMEN

The environmental risk assessment of UVCBs (i.e., substances of unknown or variable composition, complex reaction products, or biological materials) is challenging due to their inherent complexity. A particular problem is that UVCBs can contain constituents with unidentified chemical structures and/or have variable composition of constituents from batch to batch. Moreover, the composition of a UVCB in the environment is not the same as that of the UVCB in a product, meaning that a risk assessment based on environmental exposure to the UVCB in a product does not represent the actual environmental risk. Here we propose an in silico fate-directed risk assessment framework for UVCBs using cedarwood oil as a case study. The framework uses Monte Carlo simulations and the mass-balance models SimpleTreat and RAIDAR to provide quantitative information on whether unidentified constituents within the physical-chemical property space of a UVCB can be the decisive factor for the environmental risk of the entire UVCB. Thereby the framework provides a robust decision tool to evaluate if a UVCB risk assessment requires additional tests or if the data on known constituents is representative for the risk of the entire UVCB. In the case of cedarwood oil, it could be shown that a risk assessment based on the known constituents (representing around 70% of the overall UVCB by weight) is representative for the environmental risk of the entire UVCB - reducing the need for additional testing and test animals.


Asunto(s)
Aceites Volátiles , Petróleo , Animales , Exposición a Riesgos Ambientales , Medición de Riesgo
13.
Environ Sci Process Impacts ; 24(10): 1945-1956, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36178267

RESUMEN

The hazards of many plastic additives on human and environmental health are well documented. However, little emphasis has been put on plastic additives that are persistent, mobile, and toxic (PMT) rather than persistent, bioaccumulative, and toxic. Due to their high mobility and stability, it is unlikely that wastewater treatment plants will effectively remove PMT plastic additives. Herein, an in silico analysis was performed to (1) assess the retention of PMT plastic additives registered for use in Canada in wastewater treatment plants; and (2) determine whether their physical-chemical properties and structural features can be used as identifiers for PMT plastic additives with particularly low retention. We identified 124 PMT plastic additives of which 52% had less than 20% removal from wastewater treatment based on predictions using the model SimpleTreat. Log Kaw, log Kow/Dow, and log Koc/Doc ranges were defined that are indicative of low retention PMT plastic additives. Furthermore, it was found that non-halogenated PMT plastic additives that contain nitrogen are most likely to be poorly retained in wastewater treatment plants. The results of this study provide screening and prioritization criteria, as well as a suspect list for PMT plastic additives.


Asunto(s)
Nitrógeno , Plásticos , Humanos , Canadá
14.
Environ Sci Technol Lett ; 9(8): 666-672, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35966456

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are frequently used in the production of rubber and plastic, but little is known about the identity, concentration, or prevalence of PFAS in these products. In this study, a representative sample of plastic- and rubber-containing artificial turf (AT) fields from Stockholm, Sweden, was subjected to total fluorine (TF), extractable organic fluorine (EOF), and target PFAS analysis. TF was observed in all 51 AT samples (ranges of 16-313, 12-310, and 24-661 µg of F/g in backing, filling, and blades, respectively), while EOF and target PFAS occurred in <42% of all samples (<200 and <1 ng of F/g, respectively). A subset of samples extracted with water confirmed the absence of fluoride. Moreover, application of the total oxidizable precursor assay revealed negligible perfluoroalkyl acid (PFAA) formation across all three sample types, indicating that the fluorinated substances in AT are not low-molecular weight PFAA precursors. Collectively, these results point toward polymeric organofluorine (e.g., fluoroelastomer, polytetrafluoroethylene, and polyvinylidene fluoride), consistent with patent literature. The combination of poor extractability and recalcitrance toward advanced oxidation suggests that the fluorine in AT does not pose an imminent risk to users. However, concerns surrounding the production and end of life of AT, as well as the contribution of filling and blades to environmental microplastic contamination, remain.

15.
Environ Sci Process Impacts ; 24(10): 1577-1615, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35244108

RESUMEN

Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.


Asunto(s)
Productos Biológicos , Contaminantes Ambientales , Humanos , Cambio Climático , Contaminantes Orgánicos Persistentes , Ecosistema , Contaminantes Ambientales/análisis , Microplásticos , Plásticos , Regiones Árticas
16.
Ambio ; 51(2): 471-483, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34874530

RESUMEN

The Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Regiones Árticas , Humanos , Caza , Océanos y Mares
17.
Environ Sci Ecotechnol ; 12: 100189, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36157344

RESUMEN

Through ingestion and subsequent egestion, Arctic seabirds can bioaccumulate microplastics at and around their colony breeding sites. While microplastics in Arctic seabirds have been well documented, it is not yet understood to what extent these particles can act as transport vehicles for plastic-associated contaminants, including legacy persistent organic pollutants (POPs), trace metals, and organic additives. We investigated the occurrence and pattern of organic and inorganic co-contaminants of microplastics in two seabird species from the Canadian Arctic - northern fulmar (Fulmarus glacialis) and black-legged kittiwake (Rissa tridactyla). We found that fulmars had higher levels of plastic contamination and emerging organic compounds (known to be plastic additives) than kittiwakes, whereas higher concentrations of legacy POPs were found in kittiwakes than the fulmars. Furthermore, fulmars, the species with the much larger foraging range (∼200 km), had higher plastic pollution and overall contaminant burdens, indicating that birds may be acting as long-range transport vectors for plastic-associated pollution. Our results suggest a potential connection between plastic additive contamination and plastic pollution burdens in the bird stomachs, highlighting the importance of treating plastic particles and plastic-associated organic additives as co-contaminants rather than separate pollution issues.

18.
Environ Sci Process Impacts ; 23(5): 689-698, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33725069

RESUMEN

Cedarwood oil is an essential oil used as a fragrance material and insect repellent. Its main constituents are sesquiterpenes which are potentially bioaccumulative according to the REACH screening criteria. Cedarwood oil is a complex mixture of hydrophobic and volatile organic chemicals. The volatility and limited water solubility of its constituents are a challenge for standard bioconcentration factor (BCF) test methods using aqueous exposure. We used an abbreviated dietary exposure in vivo testing protocol with internal benchmark substances as "internal standards" to derive the BCF of cedarwood oil constituents using rainbow trout (Oncorhynchus mykiss). Internal benchmarking proved to be a useful tool to control for inter-individual variability, enabling us to calculate the BCF for all major cedarwood oil constituents as a mixture. We found that the BCF of two out of six analysed cedarwood oil constituents exceed a BCF of 5000 and two others exceed a BCF of 2000 (90% confidence level) even though we found evidence for biotransformation for individual constituents. The results of this study indicate that more work is warranted to study the bioaccumulation of essential oils and highlights the utility of internal benchmarking in in vivo dietary exposure BCF tests to increase robustness and allow for the BCF measurement of complex mixtures.


Asunto(s)
Aceites Volátiles , Oncorhynchus mykiss , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Animales , Bioacumulación
19.
Environ Sci Process Impacts ; 22(1): 207-216, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894800

RESUMEN

Scientists and decision makers need accurate, accessible and fast tools to assess and prioritize the persistence (POV) and environmental long-range transport potential (LRTP) of chemicals. Here we evaluated the Organisation for Economic Co-operation and Development (OECD) POV and LRTP Screening Tool ("the Tool") with respect to the POV and LRTP estimates that the Tool provides for organophosphate esters (OPEs). We found that the use of default parameter values could significantly underestimate POV and LRTP values of OPEs and, potentially, other Persistent Mobile Organic Compounds (PMOCs), by not accounting for episodic atmospheric transport and poleward river-based transport in the northern hemisphere. Specifically, sensitivity and Monte Carlo uncertainty analyses indicate that non-chlorinated OPEs could be subject to LRTP when uncertainties in gas-particle partitioning and its implications for atmospheric degradation are considered, and chlorinated OPEs when river-based transport is considered. Further, the analyses showed strong dependence of results on the accuracy of the environmental half-lives used as input parameters. We suggest that the Tool could be modified to include an optional "Arctic (PMOC) LRTP setting" that incorporates episodic atmospheric and river-based transport as well as decreased environmental half-lives due to cold temperatures.


Asunto(s)
Contaminantes Ambientales , Organización para la Cooperación y el Desarrollo Económico , Organofosfatos , Regiones Árticas , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Ésteres , Organofosfatos/análisis
20.
Mar Pollut Bull ; 127: 463-477, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29475687

RESUMEN

Estuaries are amongst the most socio-economically and ecologically important environments however, due to competing and conflicting demands, management is often challenging with a complex legislative framework managed by multiple agencies. To facilitate the understanding of this legislative framework, we have developed a GISbased Estuarine Planning Support System tool. The tool integrates the requirements of the relevant legislation and provides a basis for assessing the current environmental state of an estuary as well as informing and assessing new plans to ensure a healthy estuarine state. The tool ensures that the information is easily accessible for regulators, managers, developers and the public. The tool is intended to be adaptable, but is assessed using the Humber Estuary, United Kingdom as a case study area. The successful application of the tool for complex socio-economic and environmental systems demonstrates that the tool can efficiently guide users through the complex requirements needed to support sustainable development.


Asunto(s)
Conservación de los Recursos Hídricos/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Estuarios , Conservación de los Recursos Hídricos/economía , Conservación de los Recursos Hídricos/legislación & jurisprudencia , Análisis Costo-Beneficio , Toma de Decisiones , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/legislación & jurisprudencia , Estuarios/economía , Regulación Gubernamental , Factores Socioeconómicos , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA