Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Ann Hematol ; 103(4): 1167-1179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38386032

RESUMEN

Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.


Asunto(s)
Anemia de Células Falciformes , Accidente Cerebrovascular , Humanos , Células Endoteliales/metabolismo , Transcriptoma , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Anemia de Células Falciformes/complicaciones , Isquemia , Perfilación de la Expresión Génica , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Familia de Proteínas EGF/genética , Familia de Proteínas EGF/metabolismo
2.
Cancer Immunol Immunother ; 71(8): 1909-1921, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35039904

RESUMEN

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are characterized by risk of relapses, poor survival, unwanted side effects and high toxicity with the current therapies. In light of these facts, there are efforts to develop new drugs specific for deregulated molecules that participate in leukemia pathogenesis. Hematopoietic cell kinase (HCK), an Src kinase family member, is overexpressed on hematopoietic stem cells of MDS and de novo AML patients and involved in the oncogenic process. Thus, we investigated in vitro, ex vivo and in vivo effects of a novel chemical compound targeting HCK inhibition (iHCK-37), in combination with the most used drugs for the treatment of MDS and de novo AML, 5-Azacytidine and Cytarabine. Herein, the combination treatment with iHCK-37 and 5-Azacytidine or Cytarabine demonstrated additive effects against leukemia cells, compared to either drug alone. iHCK-37 plus 5-Azacytidine or Cytarabine treatment was able to reduce the activation of oncogenic pathways, MAPK/ERK and PI3K/AKT, leading to reduction of ERK and AKT phosphorylation, and increased BAX and decreased BCL-XL protein expression. Moreover, treatment with iHCK-37 reduced MDS and AML CD34-positive cell numbers inside a 3D-structure but did not affect normal CD34-positive cell numbers. In vivo analysis showed that leukemic mice treated with iHCK-37 had reduced ERK and AKT proteins phosphorylation levels and leukocyte numbers. In conclusion, the iHCK-37 inhibitor has anti-neoplastic activity in leukemia cells without altering apoptosis and survival rate of normal cells, suggesting on-target malignant cell killing activity as a single agent or in combination with 5-Azacytidine or Cytarabine.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Animales , Azacitidina/farmacología , Azacitidina/uso terapéutico , Citarabina/farmacología , Citarabina/uso terapéutico , Leucemia Mieloide Aguda/metabolismo , Ratones , Síndromes Mielodisplásicos/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-hck
3.
Toxicol Appl Pharmacol ; 442: 115990, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35331739

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogeneous hematological neoplasm with low survival rates. Thus, the investigation of new therapeutic targets is essential. The Rac subfamily of GTPase proteins has been shown to participate in the physiopathology of hematological malignancies. However, their expression and function in AML remain unclear. In this study, we evaluated Rac1, Rac2 and Rac3 gene expressions in AML and their impact on clinical outcomes. We further investigated the effects of the in vitro treatment with a Rac inhibitor (EHT-1864) on AML cell lines. Rac3 expression was increased in AML derived from myelodysplastic syndromes compared to healthy donors. Rac2 expression did not differ between AML patients and healthy donors, but de novo AML patients with higher Rac2 presented lower overall survival. Oncogenic pathway gene-sets related to AKT/mTOR were identified as associated with Rac1, Rac2 and Rac3 expressions. EHT-1864 treatment reduced the viability of OCI-AML3, KG1 and Kasumi-1 cells in a time and dose-dependent manner. In OCI-AML3 cells, treatment with EHT-1864 induced apoptosis, autophagy, and led to the accumulation of cells in the G1 phase of the cell cycle. These changes were concomitant with alterations in p53 and cyclins. Dowregulation of the PI3K/AKT/mTOR pathway was also observed. Interestingly, the combined treatment of EHT-1864 and low doses of daunorubicin enhanced OCI-AML3 cell apoptosis. In conclusion, Rac2 expression is a prognostic factor in AML and our preclinical results suggest that Rac inhibition may be an attractive mechanism to compose the antineoplastic strategy for this disease.


Asunto(s)
GTP Fosfohidrolasas , Leucemia Mieloide Aguda , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
4.
Blood Cells Mol Dis ; 88: 102545, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33611093

RESUMEN

Familial forms of bone marrow defects are rare disorders and description of new cases are valuable opportunities to clarify the molecular machinery that triggers hematopoiesis and blood formation, as well as risk to malignant transformation. We investigated the genetic scenario and possible patterns of transmission in a rare case of familial myeloid disorder with a history of exposure to pesticides. Blood counts of two proband sisters, age 41 and 42, revealed mild anemia, neutrophilia and thrombocytopenia with bone marrow finding mimicking primary myelofibrosis in the cellular phase. We analyzed the coding regions of 78 myeloid neoplasms-related genes and 16 encoding xenobiotic metabolizing genes using Next-Generation Sequencing. The GATA1 variant c.788C > T, p.T263M, located in the C-terminal zinc finger domain of GATA1, was detected in the DNA of the two sisters. The screening of the other kindreds also revealed the p.T263M variant in the mother and two daughters with the same bone marrow disorder. This is the first report of an alteration in the GATA1 CF domain causing anemia, thrombocytopenia and megakaryocyte proliferation with mild myelofibrosis, correlating a new GATA1 germline variant with myeloid disorder.


Asunto(s)
Anemia/genética , Factor de Transcripción GATA1/genética , Mutación de Línea Germinal , Mielofibrosis Primaria/genética , Trombocitopenia/genética , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Mutación Puntual , Adulto Joven
5.
J Cell Mol Med ; 23(2): 1562-1571, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30484958

RESUMEN

The role of tumour microenvironment in neoplasm initiation and malignant evolution has been increasingly recognized. However, the bone marrow mesenchymal stromal cell (BMMSC) contribution to disease progression remains poorly explored. We previously reported that the expression of serine protease inhibitor kunitz-type2 (SPINT2/HAI-2), an inhibitor of hepatocyte growth factor (HGF) activation, is significantly lower in BMMSC from myelodysplastic syndromes (MDS) patients compared to healthy donors (HD). Thus, to investigate whether this loss of expression was due to SPINT2/HAI-2 methylation, BMMSC from MDS and de novo acute myeloid leukaemia (de novo AML) patients were treated with 5-Azacitidine (Aza), a DNA methyltransferase inhibitor. In MDS- and de novo AML-BMMSC, Aza treatment resulted in a pronounced SPINT2/HAI-2 levels up-regulation. Moreover, Aza treatment of HD-BMMSC did not improve SPINT2/HAI-2 levels. To understand the role of SPINT2/HAI-2 down-regulation in BMMSC physiology, SPINT2/HAI-2 expression was inhibited by lentivirus. SPINT2 underexpression resulted in an increased production of HGF by HS-5 stromal cells and improved survival of CD34+ de novo AML cells. We also observed an increased adhesion of de novo AML hematopoietic cells to SPINT2/HAI-2 silenced cells. Interestingly, BMMSC isolated from MDS and de novo AML patients had increased expression of the integrins CD49b, CD49d, and CD49e. Thus, SPINT2/HAI-2 may contribute to functional and morphological abnormalities of the microenvironment niche and to stem/progenitor cancer cell progression. Hence, down-regulation in SPINT2/HAI-2 gene expression, due to methylation in MDS-BMMSC and de novo AML-BMMSC, provides novel insights into the pathogenic role of the leukemic bone marrow microenvironment.


Asunto(s)
Azacitidina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Glicoproteínas de Membrana/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Integrina alfa2/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Madre Neoplásicas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
6.
Cytokine ; 120: 88-91, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31054480

RESUMEN

Angiopoietin-like proteins (ANGPTL) are responsible for inhibiting lipoprotein lipase activity, and ANGPTL3 and ANGPTL4 deficiencies have been shown to lower lipoprotein levels in animal models and in humans carrying loss-of-function mutations. Sickle cell anemia (SCA) is a hereditary hemolytic anemia characterized by vaso-occlusive crises and end-organ damage, which is curiously associated with hypocholesterolemia and a low incidence of atherosclerosis, whose underlying mechanisms are unclear. We hypothesized that ANGPTL3 and ANGPTL4 dysregulation is responsible for the hypolipidemic phenotype in SCA. We measured circulating concentrations of ANGPTL3 and ANGPTL4 and correlated them with hemolytic biomarkers and lipoproteins in 40 patients with SCA and 30 control individuals. The association between hemolysis and low cholesterol levels in SCA was confirmed along with surprisingly higher levels of ANGPTL3 and ANGPTL4 in SCA patients than in controls. ANGPTL3 correlated with hemolysis markers LDH and reticulocyte counts, while ANGPTL4 did not. Our data show a paradoxical increase in production of ANGPTL3 and ANGPTL4 in SCA, which would be expected to cause hyperlipidemia, due to increased inhibition of lipoprotein lipase. ANGPTL3, exclusively produced by the liver, correlated with hemolysis markers, suggesting a possible hepatic response to hemolysis. Further functional studies and replication in larger cohorts are warranted to investigate the dysregulation of lipid metabolism in SCA.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Proteínas Similares a la Angiopoyetina/metabolismo , Colesterol/sangre , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 959-966, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29307747

RESUMEN

UHMK1 (KIS) is a nuclear serine/threonine kinase that possesses a U2AF homology motif and phosphorylates and regulates the activity of the splicing factors SF1 and SF3b155. Mutations in these components of the spliceosome machinery have been recently implicated in leukemogenesis. The fact that UHMK1 regulates these factors suggests that UHMK1 might be involved in RNA processing and perhaps leukemogenesis. Here we analyzed UHMK1 expression in normal hematopoietic and leukemic cells as well as its function in leukemia cell line. In the normal hematopoietic compartment, markedly higher levels of transcripts were observed in differentiated lymphocytes (CD4+, CD8+ and CD19+) compared to the progenitor enriched subpopulation (CD34+) or leukemia cell lines. UHMK1 expression was upregulated in megakaryocytic-, monocytic- and granulocytic-induced differentiation of established leukemia cell lines and in erythrocytic-induced differentiation of CD34+ cells. No aberrant expression was observed in patient samples of myelodysplastic syndrome (MDS), acute myeloid (AML) or lymphoblastic (ALL) leukemia. Nonetheless, in MDS patients, increased levels of UHMK1 expression positively impacted event free and overall survival. Lentivirus mediated UHMK1 knockdown did not affect proliferation, cell cycle progression, apoptosis or migration of U937 leukemia cells, although UHMK1 silencing strikingly increased clonogenicity of these cells. Thus, our results suggest that UHMK1 plays a role in hematopoietic cell differentiation and suppression of autonomous clonal growth of leukemia cells.


Asunto(s)
Diferenciación Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Células K562 , Leucemia/genética , Leucemia/patología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células U937 , Regulación hacia Arriba/genética , Adulto Joven
8.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 450-461, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27840303

RESUMEN

New drug development for neoplasm treatment is nowadays based on molecular targets that participate in the disease pathogenesis and tumor phenotype. Herein, we describe a new specific pharmacological hematopoietic cell kinase (HCK) inhibitor (iHCK-37) that was able to reduce PI3K/AKT and MAPK/ERK pathways activation after erythropoietin induction in cells with high HCK expression: iHCK-37 treatment increased leukemic cells death and, very importantly, did not affect normal hematopoietic stem cells. We also present evidence that HCK, one of Src kinase family (SFK) member, regulates early-stage erythroid cell differentiation by acting as an upstream target of a frequently deregulated pathway in hematologic neoplasms, PI3K/AKT and MAPK/ERK. Notably, HCK levels were highly increased in stem cells from patients with some diseases, as Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML), that are associated with ineffective erythropoiesis These discoveries support the exploration of the new pharmacological iHCK-37 in future preclinical and clinical studies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Eritropoyetina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-hck/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-hck/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto , Anciano , Muerte Celular/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Femenino , Factor de Transcripción GATA1/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
10.
Transfusion ; 56(1): 119-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26337929

RESUMEN

BACKGROUND: Pregnancy represents a challenge for women with sickle cell disease (SCD), with higher rates of both maternal and fetal complications. The aim of this study was to evaluate the impact of prophylactic transfusion support administered specifically to pregnant women with sickle hemoglobin C disease. MATERIALS AND METHODS: Patients were divided into two groups according to the type of transfusion support received: 10 women received prophylactic erythrocytapheresis or manual exchange transfusion at 28 weeks of gestation, and 14 received transfusions only on demand, due to acute complications, or received no transfusions at all. RESULTS: Our results indicated higher frequencies of SCD-related complications in the group that did not receive prophylactic transfusion support (35.7% vs. only 10% in the erythrocytapheresis group). Furthermore, these complications were more severe in this group and included all cases of acute chest syndrome. A significant difference was observed concerning gestational age at birth (38.7 weeks in the transfusion group vs. 34.4 weeks, p = 0.037), with a higher frequency of preterm births in the nontransfused group (69.23% vs. 30% in the transfusion group). CONCLUSION: We demonstrated a clear reduction of unfavorable outcomes in patients receiving prophylactic transfusions, probably reflecting better maternal and fetal conditions, which corroborated to the more satisfactory indices of vitality, observed in newborns. Considering that erythrocytapheresis or manual exchange transfusions both represent feasible and safe procedures, they could represent important tools for the optimal management of these patients.


Asunto(s)
Eliminación de Componentes Sanguíneos , Transfusión de Eritrocitos , Recambio Total de Sangre , Enfermedad de la Hemoglobina C/terapia , Complicaciones Hematológicas del Embarazo/terapia , Atención Prenatal/métodos , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , Complicaciones del Embarazo/prevención & control , Resultado del Tratamiento
11.
Blood Cells Mol Dis ; 55(3): 228-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26227852

RESUMEN

PIP4K2A is a lipid kinase that phosphorylates PtdIns5P, generating PtdIns4,5P2. Recently, PIP4K2A was identified as a potential target in acute myeloid leukemia cells. The objective of the present study was to investigate the PIP4K2A expression in hematological malignancies and verify the effects of PIP4K2A silencing on proliferation and survival of leukemia cell lines. PIP4K2A was found to be a cytoplasmic and nuclear protein with reduced levels in leukemia cell lines compared to normal leukocytes. PIP4K2A mRNA levels were significantly reduced in bone marrow cells from acute lymphoid leukemia (ALL) patients compared with healthy donors and in myelodysplastic syndromes (MDS) with ≥5% compared with <5% bone marrow blasts. Low PIP4K2A expression (lowest tertile versus 2 higher tertiles) negatively impacted overall survival of MDS patients by univariate analysis. PIP4K2A silencing did not modulate cell proliferation, clonogenicity and apoptosis of HEL and Namalwa leukemia cells. In summary, we characterized the expression of PIP4K2A in a cohort of patients with hematological malignancies and we found that PIP4K2A mRNA expression is downregulated in RAEB-1/RAEB-2 MDS and ALL cells, and PIP4K2A silencing does not modulate cell survival in HEL and Namalwa leukemia cells.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Apoptosis/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Recuento de Células , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Hematológicas/patología , Humanos , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
12.
Eur J Haematol ; 94(5): 413-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25200248

RESUMEN

TET2, a member of the ten-eleven-translocation (TET) family genes that modify DNA by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), is located in chromosome 4q24 and is frequently mutated in myeloid malignancies. The impact of TET2 mutation on survival outcomes is still controversial; however, functional studies have proved that it is a loss-of-function mutation that impairs myeloid cell differentiation and contributes to the phenotype of myeloid neoplasia. We, herein, aimed to investigate TET2 expression in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). A significantly decreased TET2 expression was observed in bone marrow cells from AML (n = 53) and patients with MDS (n = 64), compared to normal donors (n = 22). In MDS, TET2 expression was significantly reduced in RAEB-1/RAEB-2 compared to other WHO 2008 classifications, and a lower TET2 expression was observed at the time of MDS disease progression in four of five patients. In multivariate analysis, low TET2 expression (P = 0.03), male gender (P = 0.02), and WHO 2008 classification (P < 0.0001) were independent predictors of poorer overall survival. These results suggest that defective TET2 expression plays a role in the MDS pathophysiology and predicts survival outcomes in this disease.


Asunto(s)
Anemia Refractaria con Exceso de Blastos/genética , Anemia Sideroblástica/genética , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anemia Refractaria con Exceso de Blastos/diagnóstico , Anemia Refractaria con Exceso de Blastos/mortalidad , Anemia Refractaria con Exceso de Blastos/patología , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/mortalidad , Anemia Sideroblástica/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Estudios de Casos y Controles , Cromosomas Humanos Par 4 , Dioxigenasas , Regulación hacia Abajo , Femenino , Expresión Génica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Mutación , Pronóstico , Análisis de Supervivencia
13.
Exp Cell Res ; 324(2): 137-45, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24726915

RESUMEN

ANKHD1 is a multiple ankyrin repeat containing protein, recently identified as a novel member of the Hippo signaling pathway. The present study aimed to investigate the role of ANKHD1 in DU145 and LNCaP prostate cancer cells. ANKHD1 and YAP1 were found to be highly expressed in prostate cancer cells, and ANKHD1 silencing decreased cell growth, delayed cell cycle progression at the S phase, and reduced tumor xenograft growth. Moreover, ANKHD1 knockdown downregulated YAP1 expression and activation, and reduced the expression of CCNA2, a YAP1 target gene. These findings indicate that ANKHD1 is a positive regulator of YAP1 and promotes cell growth and cell cycle progression through Cyclin A upregulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Fosfoproteínas/genética , Neoplasias de la Próstata/genética , Proteínas de Unión al ARN/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Ciclina A/genética , Ciclina A/metabolismo , Células HeLa , Vía de Señalización Hippo , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción , Activación Transcripcional , Proteínas Señalizadoras YAP
14.
Biochim Biophys Acta ; 1833(5): 1269-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23419774

RESUMEN

The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. CATS is highly expressed in cancer cell lines in a cell cycle dependent manner and is induced by mitogens. CATS is considered a marker for proliferation, known to control the metaphase-to-anaphase transition during the cell division. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) protein as a CATS interacting partner. The interaction between CATS and KIS was confirmed by GST pull-down, co-immunoprecipitation and co-localization experiments. Using kinase assay we showed that CATS is a substrate of KIS and mapped the phosphorylation site to CATS serine 131 (S131). Protein expression analysis revealed that KIS levels changed in a cell cycle-dependent manner and in the opposite direction to CATS levels. In a reporter gene assay KIS was able to enhance the transcriptional repressor activity of CATS, independent of CATS phophorylation at S131. Moreover, we showed that CATS and KIS antagonize the transactivation capacity of CALM/AF10.In summary, our results show that CATS interacts with and is a substrate for KIS, suggesting that KIS regulates CATS function.


Asunto(s)
Proteínas Portadoras , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Fusión Oncogénica , Proteínas Serina-Treonina Quinasas , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Mol Cell Biochem ; 393(1-2): 145-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24788727

RESUMEN

Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.


Asunto(s)
Proliferación Celular/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Globinas alfa/biosíntesis , gammaglobulinas/biosíntesis , Apoptosis/genética , Regulación de la Expresión Génica , Silenciador del Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Células K562 , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
16.
Med Acupunct ; 36(1): 39-44, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380168

RESUMEN

Background: Sickle-cell diseases (SCD) are a group of hereditary disorders in which a specific mutation in the gene that encodes the hemoglobin ß chain leads to formation of an anomalous hemoglobin molecule (HbS) with high polymerization power. This leads to sickling of erythrocytes in situations of low oxygen tension, such as in microcirculation, resulting in peripheral microvasculature occlusion, chronic hemolysis, inflammation, and damage to several target organs. Malleolar ulcers are among the most-debilitating complications of the disease, as they are associated with significant pain, secondary infections, and social impact due to their aesthetic impairment. There are no completely satisfactory therapeutic options for this complication; local healing agents, antibiotics, and dressings are used, with high rates of recurrence and complications, such as osteomyelitis and even limb amputation. Case: This case study evaluated the effect of Traditional Chinese Medicine techniques on chronic malleolar ulcers in a 49-year-old male patient. Ten sessions of systemic acupuncture (combinations involving Source, Master, Energetic Action, and Extraordinary Vessels points), auriculotherapy, and dressing with magnets were conducted. Results: Although the primary outcome sought was not reached (decrease in ulcer diameters), this patient had great reduction of local pain, a decrease in limb edema, and important reduction of his inflammatory condition, reflected in his decreasing blood levels of C-reactive protein. Conclusions: These results show that acupuncture should be considered as an important auxiliary treatment for SCD complications.

17.
Leuk Lymphoma ; : 1-10, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967518

RESUMEN

This study investigates COVID-19 outcomes and immune response in chronic myeloid leukemia (CML) patients post-SARS-CoV-2 vaccination, comparing effectiveness of various vaccine options. Data from 118 CML patients (85 in Brazil, 33 in the US) showed similar infection rates prior (14% Brazil, 9.1% US) and post-vaccination (24.7% vs. 27.3%, respectively). In Brazil, AstraZeneca and CoronaVac were the most commonly used vaccine brands, while in the US, Moderna and Pfizer-BioNTech vaccines dominated. Despite lower seroconversion in the Brazilian cohort, all five vaccine brands analyzed prevented severe COVID-19. Patients who received mRNA and recombinant viral vector vaccines (HR: 2.20; 95%CI 1.07-4.51; p < .031) and those that had achieved at least major molecular response (HR: 1.51; 95% CI 1.01-3.31; p < .0001) showed higher seroconversion rates. Our findings suggest that CML patients can generate antibody responses regardless of the vaccine brand, thereby mitigating severe COVID-19. This effect is more pronounced in patients with well-controlled disease.

18.
Immunol Invest ; 42(8): 711-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23845179

RESUMEN

Dendritic cells (DCs) recently revealed as a potent tumor vaccine component, are commonly differentiated from monocytes by cultivation with IL-4 and GM-CSF. Despite the different opinions, the use of IFNalpha can promote DCs differentiation and activation. The aim of this study was to compare the functionality and phenotypic characterization of monocyte-derived DC generated by IL-4 (IL4DC) and IFNalpha (IFNalphaDC) modified protocols. To this aim, we investigated the expression of maturation markers, co-stimulatory molecules, relevant miRNA, cytokine and migratory profiles and the functional ability of these cells to stimulate autologous T cells in vitro. We herein investigated the molecular mechanism underlying the parameters previously described, as the relative expression of NF-kB p65, c-fos and c-jun, transcription factors. Our results demonstrated that IL4DC presented a stable phenotype, an increase in migratory capacity and NF-KB activation, in addition to lower levels of miR-146 a and miR-221. We believe that the IL4DC migratory potential and increase in NFkBp65 expression may be involved in higher IL12 expression and migration, suggesting a preferential activation of TH1 immune responses by IL4DC.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas/inmunología , Interferón-alfa/inmunología , Interleucina-4/inmunología , Células TH1/inmunología , Antígenos de Diferenciación/metabolismo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Células Dendríticas/trasplante , Humanos , Inmunofenotipificación , Interleucina-12/genética , Interleucina-12/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Activación de Linfocitos , MicroARNs/metabolismo , FN-kappa B/metabolismo , Balance Th1 - Th2
19.
J Cell Commun Signal ; 17(4): 1487-1499, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37310653

RESUMEN

The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.

20.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513933

RESUMEN

Green tea catechins are bioactive polyphenol compounds which have attracted significant attention for their diverse biological activities and potential health benefits. Notably, epigallocatechin-3-gallate (EGCG) has emerged as a potent apoptosis inducer through mechanisms involving caspase activation, modulation of Bcl-2 family proteins, disruption of survival signaling pathways and by regulating the redox balance, inducing oxidative stress. Furthermore, emerging evidence suggests that green tea catechins can modulate epigenetic alterations, including DNA methylation and histone modifications. In addition to their apoptotic actions, ROS signaling effects and reversal of epigenetic alterations, green tea catechins have shown promising results in promoting the differentiation of leukemia cells. This review highlights the comprehensive actions of green tea catechins and provides valuable insights from clinical trials investigating the therapeutic potential of green tea catechins in leukemia treatment. Understanding these multifaceted mechanisms and the outcomes of clinical trials may pave the way for the development of innovative strategies and the integration of green tea catechins into clinical practice for improving leukemia patient outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA