Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(3): 827-840, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270799

RESUMEN

Forests contribute to climate change mitigation through carbon storage and uptake, but the extent to which this carbon pool varies in space and time is still poorly known. Several Earth Observation missions have been specifically designed to address this issue, for example, NASA's GEDI, NASA-ISRO's NISAR and ESA's BIOMASS. Yet, all these missions' products require independent and consistent validation. A permanent, global, in situ, site-based forest biomass reference measurement system relying on ground data of the highest possible quality is therefore needed. Here, we have assembled a list of almost 200 high-quality sites through an in-depth review of the literature and expert knowledge. In this study, we explore how representative these sites are in terms of their coverage of environmental conditions, geographical space and biomass-related forest structure, compared to those experienced by forests worldwide. This work also aims at identifying which sites are the most representative, and where to invest to improve the representativeness of the proposed system. We show that the environmental coverage of the system does not seem to improve after at least the 175 most representative sites are included, but geographical and structural coverages continue to improve as more sites are added. We highlight the areas of poor environmental, geographical, or structural coverage, including, but not limited to, Canada, the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). For the proposed system to succeed, we stress that (1) data must be collected and processed applying the same standards across all countries and continents; (2) system establishment and management must be inclusive and equitable, with careful consideration of working conditions; and (3) training and site partner involvement in downstream activities should be mandatory.


Asunto(s)
Tecnología de Sensores Remotos , Árboles , Biomasa , Bosques , Carbono , Clima Tropical
2.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478589

RESUMEN

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Árboles , Xilema
3.
Ecol Appl ; 30(7): e02154, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32347996

RESUMEN

In tropical rainforests, tree size and number density are influenced by disturbance history, soil, topography, climate, and biological factors that are difficult to predict without detailed and widespread forest inventory data. Here, we quantify tree size-frequency distributions over an old-growth wet tropical forest at the La Selva Biological Station in Costa Rica by using an individual tree crown (ITC) algorithm on airborne lidar measurements. The ITC provided tree height, crown area, the number of trees >10 m height and, predicted tree diameter, and aboveground biomass from field allometry. The number density showed strong agreement with field observations at the plot- (97.4%; 3% bias) and tree-height-classes level (97.4%; 3% bias). The lidar trees size spectra of tree diameter and height closely follow the distributions measured on the ground but showed less agreement with crown area observations. The model to convert lidar-derived tree height and crown area to tree diameter produced unbiased (0.8%) estimates of plot-level basal area and with low uncertainty (6%). Predictions on basal area for tree height classes were also unbiased (1.3%) but with larger uncertainties (22%). The biomass estimates had no significant bias at the plot- and tree-height-classes level (-5.2% and 2.1%). Our ITC method provides a powerful tool for tree- to landscape-level tropical forest inventory and biomass estimation by overcoming the limitations of lidar area-based approaches that require local calibration using a large number of inventory plots.


Asunto(s)
Bosques , Árboles , Biomasa , Costa Rica , Bosque Lluvioso , Clima Tropical
4.
Global Biogeochem Cycles ; 29(10): 1739-1753, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-27610002

RESUMEN

In less than 15 years, the Amazon region experienced three major droughts. Links between droughts and fires have been demonstrated for the 1997/1998, 2005, and 2010 droughts. In 2010, emissions of 510 ± 120 Tg C were associated to fire alone in Amazonia. Existing approaches have, however, not yet disentangled the proportional contribution of multiple land cover sources to this total. We develop a novel integration of multisensor and multitemporal satellite-derived data on land cover, active fires, and burned area and an empirical model of fire-induced biomass loss to quantify the extent of burned areas and resulting biomass loss for multiple land covers in Mato Grosso (MT) state, southern Amazonia-the 2010 drought most impacted region. We show that 10.77% (96,855 km2) of MT burned. We estimated a gross carbon emission of 56.21 ± 22.5 Tg C from direct combustion of biomass, with an additional 29.4 ± 10 Tg C committed to be emitted in the following years due to dead wood decay. It is estimated that old-growth forest fires in the whole Brazilian Legal Amazon (BLA) have contributed to 14.81 Tg of C (11.75 Tg C to 17.87 Tg C) emissions to the atmosphere during the 2010 fire season, with an affected area of 27,555 km2. Total C loss from the 2010 fires in MT state and old-growth forest fires in the BLA represent, respectively, 77% (47% to 107%) and 86% (68.2% to 103%) of Brazil's National Plan on Climate Change annual target for Amazonia C emission reductions from deforestation.

5.
Ecol Appl ; 25(7): 1776-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26591445

RESUMEN

There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution remote sensing can predict a large percentage of variance in species richness and potentially provide a framework to map and predict alpha diversity among trees in diverse tropical forests.


Asunto(s)
Biodiversidad , Bosques , Tecnología de Sensores Remotos , Árboles/clasificación , Clima Tropical , Demografía , Monitoreo del Ambiente , Islas , Panamá
6.
Proc Natl Acad Sci U S A ; 108(24): 9899-904, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628575

RESUMEN

Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.


Asunto(s)
Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Árboles/metabolismo , Clima Tropical , África del Sur del Sahara , Asia Sudoriental , Biomasa , Cambio Climático , Ecosistema , Geografía , América Latina , Modelos Biológicos , Árboles/crecimiento & desarrollo
7.
Ecol Appl ; 21(4): 1120-37, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21774418

RESUMEN

Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies.


Asunto(s)
Ecosistema , Radar , Tecnología de Sensores Remotos/métodos , Árboles/fisiología , Carbono/metabolismo , Factores de Tiempo
8.
Sci Rep ; 11(1): 11279, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050217

RESUMEN

Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery from previous disturbance. Attributing the carbon sink to transient recovery or other processes is challenging because we do not understand the sensitivity of conventional remote sensing methods to changes in aboveground carbon density (ACD) caused by disturbance events. Here we use ultra-high-density drone lidar to quantify the impact of a blowdown disturbance on ACD in a lowland rain forest in Costa Rica. We show that the blowdown decreased ACD by at least 17.6%, increased the number of canopy gaps, and altered the gap size-frequency distribution. Analyses of a canopy-height transition matrix indicate departure from steady-state conditions. This event will initiate a transient sink requiring an estimated 24-49 years to recover pre-disturbance ACD. Our results suggest that blowdowns of this magnitude and extent can remain undetected by conventional satellite optical imagery but are likely to alter ACD decades after they occur.

9.
Sci Adv ; 7(27)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34215577

RESUMEN

Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year-1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year-1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year-1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.

10.
BMC Infect Dis ; 10: 187, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573228

RESUMEN

BACKGROUND: Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). METHODS: We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. RESULTS: Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first day of the year when a county is snow free. CONCLUSIONS: Although the prevalence of influenza in waterfowl has long been appreciated, we show that 22 species of song birds and perching birds (order Passeriformes) are influenza reservoirs in the contiguous US.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Passeriformes/virología , Medición de Riesgo , Animales , Cloaca/virología , Geografía , Modelos Estadísticos , Prevalencia , Estados Unidos
11.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998890

RESUMEN

Deforestation is the primary driver of carbon losses in tropical forests, but it does not operate alone. Forest fragmentation, a resulting feature of the deforestation process, promotes indirect carbon losses induced by edge effect. This process is not implicitly considered by policies for reducing carbon emissions in the tropics. Here, we used a remote sensing approach to estimate carbon losses driven by edge effect in Amazonia over the 2001 to 2015 period. We found that carbon losses associated with edge effect (947 Tg C) corresponded to one-third of losses from deforestation (2592 Tg C). Despite a notable negative trend of 7 Tg C year-1 in carbon losses from deforestation, the carbon losses from edge effect remained unchanged, with an average of 63 ± 8 Tg C year-1 Carbon losses caused by edge effect is thus an additional unquantified flux that can counteract carbon emissions avoided by reducing deforestation, compromising the Paris Agreement's bold targets.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Biomasa , Secuestro de Carbono , Conservación de los Recursos Naturales/métodos , Bosques
12.
Sci Rep ; 9(1): 15331, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653952

RESUMEN

We show a recent increasing trend in Vapor Pressure Deficit (VPD) over tropical South America in dry months with values well beyond the range of trends due to natural variability of the climate system defined in both the undisturbed Preindustrial climate and the climate over 850-1850 perturbed with natural external forcing. This trend is systematic in the southeast Amazon but driven by episodic droughts (2005, 2010, 2015) in the northwest, with the highest recoded VPD since 1979 for the 2015 drought. The univariant detection analysis shows that the observed increase in VPD cannot be explained by greenhouse-gas-induced (GHG) radiative warming alone. The bivariate attribution analysis demonstrates that forcing by elevated GHG levels and biomass burning aerosols are attributed as key causes for the observed VPD increase. We further show that There is a negative trend in evaporative fraction in the southeast Amazon, where lack of atmospheric moisture, reduced precipitation together with higher incoming solar radiation (~7% decade-1 cloud-cover reduction) influences the partitioning of surface energy fluxes towards less evapotranspiration. The VPD increase combined with the decrease in evaporative fraction are the first indications of positive climate feedback mechanisms, which we show that will continue and intensify in the course of unfolding anthropogenic climate change.

13.
Nat Plants ; 5(9): 944-951, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358958

RESUMEN

Changes in terrestrial tropical carbon stocks have an important role in the global carbon budget. However, current observational tools do not allow accurate and large-scale monitoring of the spatial distribution and dynamics of carbon stocks1. Here, we used low-frequency L-band passive microwave observations to compute a direct and spatially explicit quantification of annual aboveground carbon (AGC) fluxes and show that the tropical net AGC budget was approximately in balance during 2010 to 2017, the net budget being composed of gross losses of -2.86 PgC yr-1 offset by gross gains of -2.97 PgC yr-1 between continents. Large interannual and spatial fluctuations of tropical AGC were quantified during the wet 2011 La Niña year and throughout the extreme dry and warm 2015-2016 El Niño episode. These interannual fluctuations, controlled predominantly by semiarid biomes, were shown to be closely related to independent global atmospheric CO2 growth-rate anomalies (Pearson's r = 0.86), highlighting the pivotal role of tropical AGC in the global carbon budget.


Asunto(s)
Ciclo del Carbono , Carbono/análisis , Tecnología de Sensores Remotos , Clima Tropical , Nave Espacial
14.
Nat Commun ; 9(1): 3172, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093640

RESUMEN

Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3 ± 0.2 (95% CI) PgC yr-1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005-2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35 ± 1.80 MgC ha-1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.

15.
Sci Rep ; 7(1): 15030, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118358

RESUMEN

National forest inventories in tropical regions are sparse and have large uncertainty in capturing the physiographical variations of forest carbon across landscapes. Here, we produce for the first time the spatial patterns of carbon stored in forests of Democratic Republic of Congo (DRC) by using airborne LiDAR inventory of more than 432,000 ha of forests based on a designed probability sampling methodology. The LiDAR mean top canopy height measurements were trained to develop an unbiased carbon estimator by using 92 1-ha ground plots distributed across key forest types in DRC. LiDAR samples provided estimates of mean and uncertainty of aboveground carbon density at provincial scales and were combined with optical and radar satellite imagery in a machine learning algorithm to map forest height and carbon density over the entire country. By using the forest definition of DRC, we found a total of 23.3 ± 1.6 GtC carbon with a mean carbon density of 140 ± 9 MgC ha-1 in the aboveground and belowground live trees. The probability based LiDAR samples capture variations of structure and carbon across edaphic and climate conditions, and provide an alternative approach to national ground inventory for efficient and precise assessment of forest carbon resources for emission reduction (ER) programs.

16.
Carbon Balance Manag ; 11(1): 18, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27617029

RESUMEN

BACKGROUND: Mapping tropical forest structure is a critical requirement for accurate estimation of emissions and removals from land use activities. With the availability of a wide range of remote sensing imagery of vegetation characteristics from space, development of finer resolution and more accurate maps has advanced in recent years. However, the mapping accuracy relies heavily on the quality of input layers, the algorithm chosen, and the size and quality of inventory samples for calibration and validation. RESULTS: By using airborne lidar data as the "truth" and focusing on the mean canopy height (MCH) as a key structural parameter, we test two commonly-used non-parametric techniques of maximum entropy (ME) and random forest (RF) for developing maps over a study site in Central Gabon. Results of mapping show that both approaches have improved accuracy with more input layers in mapping canopy height at 100 m (1-ha) pixels. The bias-corrected spatial models further improve estimates for small and large trees across the tails of height distributions with a trade-off in increasing overall mean squared error that can be readily compensated by increasing the sample size. CONCLUSIONS: A significant improvement in tropical forest mapping can be achieved by weighting the number of inventory samples against the choice of image layers and the non-parametric algorithms. Without future satellite observations with better sensitivity to forest biomass, the maps based on existing data will remain slightly biased towards the mean of the distribution and under and over estimating the upper and lower tails of the distribution.

17.
PLoS One ; 10(4): e0122905, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25856163

RESUMEN

Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems.


Asunto(s)
Altitud , Biodiversidad , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Costa Rica , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical
18.
PLoS One ; 10(5): e0126754, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25951328

RESUMEN

Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.


Asunto(s)
Atmósfera/análisis , Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Biomasa , Bolivia , Brasil , Colombia , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Bosques , Perú , Clima Tropical
19.
Carbon Balance Manag ; 8(1): 10, 2013 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-24161143

RESUMEN

BACKGROUND: Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. RESULTS: We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. CONCLUSIONS: Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density.

20.
Science ; 336(6088): 1573-6, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22723420

RESUMEN

Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Ecosistema , Árboles , Clima Tropical , África del Sur del Sahara , Asia , Biomasa , Países en Desarrollo , América Latina , Método de Montecarlo , Tecnología de Sensores Remotos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA