Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37130255

RESUMEN

Deep reinforcement learning (DRL) and evolution strategies (ESs) have surpassed human-level control in many sequential decision-making problems, yet many open challenges still exist. To get insights into the strengths and weaknesses of DRL versus ESs, an analysis of their respective capabilities and limitations is provided. After presenting their fundamental concepts and algorithms, a comparison is provided on key aspects, such as scalability, exploration, adaptation to dynamic environments, and multiagent learning. Current research challenges are also discussed, including sample efficiency, exploration versus exploitation, dealing with sparse rewards, and learning to plan. Then, the benefits of hybrid algorithms that combine DRL and ESs are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA