Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 317-332, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552925

RESUMEN

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.


Asunto(s)
Encéfalo , Proteínas de la Membrana , Ratones Noqueados , Neuronas , Sinapsis , Animales , Humanos , Ratones , Encéfalo/metabolismo , Células Cultivadas , Complemento C3/metabolismo , Proteínas del Sistema Complemento/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo
2.
Water Sci Technol ; 83(8): 1893-1906, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33905360

RESUMEN

Anthropogenic loss of phosphorus to surface waters not only causes environmental problems but depletes valuable phosphorus reserves. In this study, magnesium amended biochars and magnesium silicate, synthesized from corn cobs and rice straw, respectively, were evaluated for phosphorus uptake including the effects of pH and alkalinity. The overall goal was to close the phosphorus loop by recovering phosphorus from animal waste and reusing it as fertilizer. After phosphorus uptake, spent materials were tested for phosphorus release using modified soil tests representing different soil pH and alkalinity conditions. In experiments using model animal wastewaters containing both ammonia and bicarbonate alkalinity, dissolved phosphorus was removed by struvite (MgNH4PO4·6H2O) formation, whereas in deionized water, dissolved phosphorus was removed by adsorption. Alkalinity in the model animal wastewaters competed with phosphate for dissolved or solid-associated magnesium, thereby reducing phosphorus uptake. Spent materials released significant phosphorus in waters with bicarbonate alkalinity. This work shows that abundant agricultural wastes can be used to synthesize solids for phosphorus uptake, with the spent materials having potential application as fertilizers.


Asunto(s)
Oryza , Fósforo , Animales , Fertilizantes , Fosfatos , Estruvita , Aguas Residuales , Zea mays
3.
Nat Commun ; 15(1): 7007, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143078

RESUMEN

During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as "rotational," such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our "location-dependent rotations" model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.


Asunto(s)
Macaca mulatta , Corteza Motora , Corteza Motora/fisiología , Animales , Masculino , Rotación , Movimiento/fisiología , Fenómenos Biomecánicos , Modelos Neurológicos , Neuronas/fisiología , Desempeño Psicomotor/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-23947699

RESUMEN

This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Solventes/química , Tetracloroetileno/química , Compuestos de Trialquiltina/química , Contaminantes Químicos del Agua/química , Alcoholes/química , Cromatografía de Gases , Solubilidad , Espectrofotometría Atómica , Tensoactivos/química , Volumetría
5.
Int J Mol Sci ; 12(2): 1232-44, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21541055

RESUMEN

Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications.


Asunto(s)
Glucolípidos/química , Tensoactivos/química , Emulsiones/química
6.
Water Res ; 42(6-7): 1735-43, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18035390

RESUMEN

This study investigated the efficiency of rhamnolipid biosurfactant and synthetic surfactant mixtures for improving the interfacial activity of the surfactant system against several light non-aqueous-phase liquids (LNAPLs). Since the rhamnolipid biosurfactant proved to be relatively hydrophilic, we hypothesized that mixtures of rhamnolipid biosurfactants with more hydrophobic synthetic surfactants would produce lower interfacial tensions (IFTs) than an individual rhamnolipid biosurfactant. The minimum IFT observed for rhamnolipid alone and toluene (0.03mN/m) was one order of magnitude lower than for hexane, decane, and hexadecane, demonstrating the relatively hydrophilic nature of the rhamnolipid. The low IFTs even at the low surfactant concentration used suggest mobilization as the dominant oil-removal mechanism versus supersolubilization. The critical micelle concentration (CMC) and critical microemulsion concentration (CmicroC) of the rhamnolipid were found to be 0.001w/w% (0.019mM) and 0.01w/w% (0.19mM), respectively. Three alkyl propoxylated (PO) sulfate synthetic surfactants were individually mixed with the rhamnolipid. As the hydrophobicity of the surfactant mixture approached that of the hydrocarbon, IFT values decreased by one to two orders of magnitude below that achieved with individual surfactants. This work shows that the rhamnolipid has excellent phase behavior at low concentrations and can be used in surfactant mixtures to achieve the low IFT values needed for environmental remediation, enhanced oil recovery (EOR), and other applications.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Lípidos/química , Tensoactivos/química , Tensión Superficial
7.
Water Res ; 41(10): 2180-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17399763

RESUMEN

The sorption and transport of three pharmaceutical compounds (acetaminophen, an analgesic; nalidixic acid, an antibiotic; and 17alpha-ethynyl estradiol, a synthetic hormone) were examined by batch sorption experiments and solute displacement in columns of silica, alumina, and low organic carbon aquifer sand at neutral pH. Silica and alumina were used to represent negatively-charged and positively-charged fractions of subsurface media. Column transport experiments were also conducted at pH values of 4.3, 6.2, and 8.2 for the ionizable nalidixic acid. The computer program UFBTC was used to fit the breakthrough data under equilibrium and nonequilibrium conditions with linear/nonlinear sorption. Good agreement was observed between the retardation factors derived from column model studies and estimated from equilibrium batch sorption studies. The sorption and transport of nalidixic acid was observed to be highly pH dependent, especially when the pH was near the pK(a) of nalidixic acid (5.95). Thus, near a compound's pK(a) it is especially important that the batch studies be performed at the same pH as the column experiment. While for ionic pharmaceuticals, ion exchange to oppositely-charged surfaces, appears to be the dominant adsorption mechanism, for neutral pharmaceuticals (i.e., acetaminophen, 17alpha-ethynyl estradiol) the sorption correlated well with the K(ow) of the pharmaceuticals, suggesting hydrophobically motivated sorption as the dominant mechanism.


Asunto(s)
Acetaminofén/aislamiento & purificación , Etinilestradiol/aislamiento & purificación , Concentración de Iones de Hidrógeno , Ácido Nalidíxico/aislamiento & purificación , Preparaciones Farmacéuticas/aislamiento & purificación , Desintoxicación por Sorción/métodos , Agua/análisis , Cinética , Modelos Teóricos
8.
J Hazard Mater ; 334: 168-177, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411538

RESUMEN

Solvent-free dispersants for crude oil spills were formulated based on the hydrophilic-lipophilic deviation (HLD) concept and using lipopeptides from Bacillus sp. GY19. The lipopeptides were recovered and concentrated from cell-free broth by foam fractionation and freeze-drying. They had good surface activity under varying temperatures, pH and NaCl levels. Moreover, the lipopeptides had low toxicity to copepods (LC50 1174mg/L) and whiteleg shrimp (LC50 1050mg/L). The characteristic curvature (Cc) of the lipopeptides showed that they were more hydrophobic (Cc 4.93) than sodium dihexyl sulfosuccinate (SDHS, Cc -0.92). The HLD equation was used to calculate the lipopeptide and the SDHS fractions in the dispersant formulations according to the equivalent alkane carbon number (EACN) of hydrocarbons and seawater salinity. The molar fraction of lipopeptides increased with increasing EACN. The lipopeptide-SDHS mixtures formed microemulsion Type III with specific hydrocarbons and crude oils. Oil displacement and baffled flask tests showed that the formulations reduced the interfacial tension and solubilized crude oil in the water column at higher efficiency than commercial dispersants or lipopeptides alone. In summary, the effectiveness of the lipopeptide-based dispersant corresponded to the optimal HLD.


Asunto(s)
Lipopéptidos/química , Contaminación por Petróleo , Petróleo , Tensoactivos/química , Animales , Bacillus/metabolismo , Biodegradación Ambiental , Mezclas Complejas , Copépodos/efectos de los fármacos , Emulsiones , Hidrocarburos/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lipopéptidos/biosíntesis , Penaeidae , Salinidad , Agua de Mar , Temperatura
9.
Water Res ; 40(7): 1481-91, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16563461

RESUMEN

Two pure minerals and a hydrophobic medium were selected to study sorption of pharmaceuticals. The sorption of four pharmaceuticals, acetaminophen (analgesic), 17alpha-ethynyl estradiol (synthetic hormone), nalidixic acid (antibiotic), and norfloxacin (antibiotic), was evaluated with silica, alumina, and Porapak P (a hydrophobic medium). Alumina and silica were selected to represent positively charged and negatively charged aquifer mineral surfaces at neutral pH, respectively, while Porapak P was selected to represent the hydrophobic organic content of an aquifer medium. At neutral pH, acetaminophen, the least hydrophobic pharmaceutical, showed no significant sorption to any of the media, while 17alpha-ethynyl estradiol, the most hydrophobic pharmaceutical, showed significant sorption to Porapak P. Nalidixic acid, which has a carboxyl functional group that is anionic at neutral pH, showed significant adsorption to the positively charged alumina. Norfloxacin, with both a carboxyl (anionic) and a piperazynyl (cationic) group, can exist in four forms (neutral, cationic, anionic, and zwitterionic) depending on the aqueous pH. Norfloxacin also showed significant adsorption than nalidixic acid. Both nalidixic acid and norfloxacin adsorbed to silica and Porapak P to a much lower extent. The pH dependence of nalidixic acid and norfloxacin adsorption to silica and alumina was also studied by varying the pH between 4 and 11. The maximum adsorption of nalidixic acid to alumina occurred near its pKa (pH approximately 6), where the combination of cationic alumina and anionic nalidixic produced maximum adsorption. The maximum adsorption of norfloxacin to alumina was observed at pH approximately 7, which was the region where the zwitterionic form dominated. This research demonstrates that the adsorption of ionizable pharmaceuticals is strongly dependent on the system pH, the pharmaceutical properties (pKa and hydrophobicity), and the nature of the surface charge (point of zero charge). For pharmaceuticals that are uncharged at environmentally relevant pH values, the main sorption factor is their solubility or hydrophobicity; for charged forms, ion exchange is also an important adsorption mechanism.


Asunto(s)
Acetaminofén/química , Óxido de Aluminio/química , Etinilestradiol/química , Ácido Nalidíxico/química , Norfloxacino/química , Dióxido de Silicio/química , Adsorción , Analgésicos no Narcóticos/química , Antiinfecciosos/química , Reactores Biológicos , Estrógenos/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
10.
J Colloid Interface Sci ; 294(1): 222-33, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16081087

RESUMEN

Polar/amphiphilic oils, called lipophilic linkers, are sometimes added to oil-water-ionic surfactant microemulsions in order to increase the solubilization of hydrophobic oils. The solubilization increase has been well documented for a number of systems. However, mathematical models to calculate the solubilization increase have been proposed only for optimum microemulsions (i.e., middle phase microemulsions solubilizing equal volumes of oil and water). In this paper we propose a model, which predicts solubilization enhancement for non-optimum microemulsion systems as well. The model is an extension of the net-average curvature model of microemulsion. The net-average curvature model is combined with a surface activity model to account for the increased palisade layer solubilization due to the presence of the polar/amphiphilic oil component. New non-linear mixing rules are also incorporated to account for the optimum salinity and the characteristic length variation of the anionic surfactant microemulsion as a function of the lipophilic linker concentration. The model predicts the effect of the lipophilic linker and the electrolyte concentration on the oil solubilization in accordance with the experimental results.

11.
J Contam Hydrol ; 82(1-2): 1-22, 2006 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16233935

RESUMEN

This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.


Asunto(s)
Contaminantes del Suelo/aislamiento & purificación , Tensoactivos/química , Tetracloroetileno/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , 2-Propanol/química , Cloruro de Calcio/química , Micelas , Solubilidad , Succinatos/química , Factores de Tiempo
12.
J Cosmet Sci ; 57(4): 309-25, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16957810

RESUMEN

Microemulsification of triglyceride-based oil is challenging due to the formation of undesirable phases such as macroemulsions, liquid crystals, or sponge phases. This research evaluates the formation of artificial sebum microemulsions using linker molecules, with the addition of co-oil to help enhance sebum solubilization. The microemulsion consists of a lipophilic linker (sorbitan monooleate), a hydrophilic linker (hexylglucocide), a main surfactant (sodium dioctyl sulfosuccinate), a co-oil, and artificial sebum. The effect of adding co-oil to the phase behavior and the microstructure of the resulting microemulsion is described. The effect of several types of co-oil is also studied; the co-oils evaluated here are squalene, squalane, isopropyl myristate, and ethyl laurate. The effect of salinity on the microemulsion phase behavior is also presented. Fish diagrams are obtained by plotting total surfactant/linker concentration as a function of sebum fraction in the oil mixture (co-oil + sebum). Different microemulsion types (Winsor Types I, II, III, and IV) are formed, depending on the total surfactant/linker concentration and the fraction of co-oil in the oil mixture. Winsor Type IV (single-phase) microemulsions are observed at high surfactant/linker concentrations. These single-phase, isotropic, and low-viscous fluids are particularly useful for cleansing and delivery of functional ingredients in skin care products. Salt addition shifts the fish diagram towards more hydrophobic oil systems and higher surfactant/linker concentrations.


Asunto(s)
Cosméticos/química , Emulsiones/química , Sebo/química , Triglicéridos/química , Lauratos/química , Miristatos/química , Cloruro de Sodio/química , Escualeno/análogos & derivados , Escualeno/química , Succinatos/química , Propiedades de Superficie , Tensoactivos/química
13.
J Contam Hydrol ; 194: 30-35, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27780094

RESUMEN

Recent developments in nanotechnology have seen an increase in the use of manufactured nanomaterials. Although their unique physicochemical properties are desirable for many products and applications, concern continues to exist about their environmental fate and potential to cause risk to human and ecological health. The purpose of this work was to examine one aspect of nanomaterial environmental fate: transport and retention in the unsaturated zone during drainage. The work made use of tall segmented columns packed with layers of two different porous media, one medium sand and one fine sand. The use of tall columns allowed drainage experiments to be conducted where the water table remained within the height of the column, permitting control of final saturation profiles without the need for capillary barrier membranes which can potentially complicate analyses. Experiments were conducted with titanium dioxide (TiO2) and polystyrene nanomaterials. For the strongly negatively-charged polystyrene nanomaterials, little retention was observed under the conditions studied. For the TiO2 nanomaterials, results of the work suggest that while saturated fine sand layers may retain more nanomaterials than saturated coarse sand layers, significantly greater retention is possible in unsaturated media. Furthermore, unsaturated medium sand layers exhibited significantly greater retention than adjacent saturated fine sand layers when present at low saturations high above the water table. Retention by unsaturated media were found to correlate strongly with elevation. Free drainage experiments including both primary and secondary drainages in homogeneous columns showed evidence of redistribution during imbibition and secondary drainage, but still showed substantial unsaturated retention of TiO2 nanoparticles high in the column, despite re-saturation with- and drainage of nanoparticle-free water.


Asunto(s)
Nanopartículas/química , Poliestirenos/química , Contaminantes del Suelo/química , Titanio/química , Contaminantes Químicos del Agua/química
14.
Water Res ; 39(4): 699-709, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15707643

RESUMEN

Surfactant-modified sorbents have been proposed for the removal of organic compounds from aqueous solution. In the present study, one cationic (HDTMA) and three anionic (DOWFAX-8390, STEOL-CS330, and Aerosol-OT) surfactants were tested for their sorptive behavior onto different sorbents (alumina, zeolite, and Canadian River Alluvium). These surfactant-modified materials were then used to sorb a range of hydrophobic organic chemicals (HOCs) of varying properties (benzene, toluene, ethylbenzene, 1,2-dichlorobenzene, naphthalene, and phenanthrene), and their sorption capacity and affinity (organic-carbon-normalized sorption coefficient, K(oc)) were quantified. The HDTMA-zeolite system proved to be the most stable surfactant-modified sorbent studied because of the limited surfactant desorption. Both anionic and cationic surfactants resulted in modified sorbents with higher sorption capacity and affinity than the unmodified Canadian River Alluvium containing only natural organic matter. The affinities of the surfactant-modified sorbents (K(oc)) for most HOCs are lower than octanol/water partition coefficient (K(ow)) normalized to the organic carbon content (f(oc)) and the density of octanol (K(oc) octanol); naphthalene and phenanthrene are the exceptions to this rule.


Asunto(s)
Compuestos Orgánicos/química , Ríos/química , Tensoactivos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Aniones , Carbono/química , Cationes , Interacciones Hidrofóbicas e Hidrofílicas , Naftalenos/química , Octanoles/química , Fenantrenos/química , Temperatura , Factores de Tiempo , Agua/química , Zeolitas/química
15.
Water Res ; 39(4): 549-58, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15707627

RESUMEN

A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 microg l(-1), the organic carbon-normalized sorption coefficients (log K(oc)) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of logK(oc) values reported in previous research for aquifer materials containing wood chars.


Asunto(s)
Carbono/química , Carbón Orgánico/química , Fenantrenos/química , Contaminantes Químicos del Agua/análisis , Adsorción , Animales , Sedimentos Geológicos/química , Compuestos Orgánicos/química , Fenantrenos/análisis , Suelo/análisis , Temperatura , Madera
16.
J Colloid Interface Sci ; 287(1): 273-87, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15914175

RESUMEN

Solubilization of dodecanol-limonene binary oil mixtures has been studied in saturated Winsor type I and III sodium dihexyl sulfosuccinate microemulsions. The systems showed different oil solubilization behavior below and above dodecanol volume fraction 0.2. Below 0.2 dodecanol volume fraction regular Winsor type microemulsions formed. The oil solubilization was characterized in this concentration range by the optimum salinity and the maximum characteristic length. Dodecanol showed Langmuirian-type surface excess adsorption at the vicinity of the surfactant layer. Variation of the optimum salinity and middle phase characteristic length with increasing dodecanol concentration could be linked to changes in the dodecanol surface excess. These relationships were used to develop new mathematical models for the optimum salinity and characteristic length as a function of oil phase composition. Both models yield excellent agreement with the data. Above dodecanol volume fraction 0.2 regular Winsor type III microemulsions are not formed. Therefore our new models are not applicable in this concentration range.

17.
J Colloid Interface Sci ; 274(2): 652-64, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15144842

RESUMEN

Linker molecules are added to microemulsion systems to enhance the interaction between the surfactant and oil (lipophilic linkers) or water (hydrophilic linkers) phases. Previous results suggest that when lipophilic and hydrophilic linkers are combined they behave as a self-assembled surfactant at the oil/water interface. In this work we investigate this self-assembly phenomenon as a function of surfactant, linker and electrolyte concentration. We find that middle phase microemulsion appears at a specific concentration higher than the critical micelle concentration (CMC), which we denote as the critical middle phase microemulsion concentration (CmicroC). When the lipophilic linker dodecanol is added in equimolar ratio to the hydrophilic linker sodium mono- and dimethyl naphthalene sulfonate (SMDNS), the middle phase microemulsion did not appear until the surfactant sodium dihexyl sulfosuccinate (SDHS) concentration was larger than the CmicroC of the SDHS-alone system. Dodecanol is shown to segregate near the surfactant tails following a Langmuir-type adsorption process. This segregation is not affected by the electrolyte concentration but is significantly reduced when the surfactant (SDHS) concentration approaches the CmicroC. The data suggest that the self-assembly between hydrophilic and lipophilic linkers to form middle phase microemulsions is only possible if a minimum amount of surfactant is present.

18.
J Contam Hydrol ; 71(1-4): 27-45, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15145560

RESUMEN

In this work, we extend the recently developed gradient approach for surfactant-enhanced remediation of dense non-aqueous phase liquid (DNAPL)-impacted sites. The goal of the gradient approach is to maximize the DNAPL solubilization capacity in swollen micelles (Type I aqueous microemulsions) while at the same time minimizing the potential for DNAPL mobilization. In this work, we introduce a modified version of the capillary/trapping curve that we refer to as the gradient curve to help interpret and/or design the gradient approach. The gradient curve presents the residual DNAPL saturation as a function of interfacial tension and microemulsion viscosity. This approach demonstrates that keeping a low viscosity of the microemulsion phase is not only important for keeping a low head loss during surfactant flooding but also to prevent oil mobilization. Eight microemulsion systems were evaluated in this research; these systems were evaluated based on their tetrachloroethylene (PCE) solubilization capacity, interfacial tension (IFT), viscosity, density, and coalescence kinetics. Two of these systems were chosen for evaluation in site-specific column tests using an increasing electrolyte gradient to produce a decreasing IFT/increasing solubilization gradient system. The column studies were conducted with media from Dover Air Force Base in Dover, DE. Both solubilized and mobilized DNAPL were quantified. During the column studies, we observed that substantial PCE was mobilized when the residual level of PCE in the column was significantly higher than the steady-state residual saturation level being approach (as predicted from the gradient curve). Four column studies were performed, three of which were used to asses the validity of the gradient curve in predicting the residual saturation after each gradient step. From these tests we observed that starting IFTs of less than 1 mN/m all produced the same mobilization potential. In the last column, we used an additional gradient step with an initial IFT above 1 mN/m to dramatically reduce the amount of PCE mobilize. Based on the good agreement between column results and projections based on the gradient curve, we propose this as a preferred method for designing gradient surfactant flushing systems.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Tetracloroetileno/aislamiento & purificación , Micelas , Solubilidad
19.
Sci Total Environ ; 488-489: 580-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24393599

RESUMEN

The fluoride removal capacities of three materials, bone char (BC), aluminum oxide coated bone char (ACBC) and aluminum oxide impregnated wood char (AIWC), along with activated alumina (AA) as a baseline material, were investigated in batch and column studies, including comparison between synthetic and natural groundwater. Results suggest that in all cases the laboratory column results exhibited higher fluoride removal efficiency than the field studies conducted in the Ethiopian Rift Valley. Further studies indicate that the reduced effectiveness in the field was likely due to a combination of the high pH of groundwater (8.2) and the presence of competing ions (sulfate). Batch studies testing potential competition from natural organic material (NOM) showed no statistical evidence of NOM competition with BC and minor evidence of competition with ACBC and AIWC. To provide evidence for using Rapid Scale Small Column Test (RSSCT) principles for BC two different column volume and particle sizes were used. The results indicate that RSSCT scaling equations, developed for activated carbon, are applicable for BC removal of fluoride. These results thus provide valuable insights for translating laboratory results of novel sorbents for mitigating fluoride tainted groundwater in the field.


Asunto(s)
Aluminio/química , Fluoruros/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Huesos/química , Carbón Orgánico/química , Etiopía
20.
Sci Total Environ ; 488-489: 521-31, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24457133

RESUMEN

In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay.


Asunto(s)
Arsénico/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Abastecimiento de Agua/estadística & datos numéricos , Cambodia , Agua Potable/química , Filtración , Pobreza , Población Rural , Contaminación Química del Agua/estadística & datos numéricos , Abastecimiento de Agua/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA