Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Reprod Domest Anim ; 59(4): e14568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646997

RESUMEN

Sperm cryopreservation is one of the main methods for preserving rooster sperm for artificial insemination (AI) in commercial flocks. Yet, rooster sperm is extremely susceptible to reactive oxygen species (ROS) produced during the freezing process. Oxidative stress could be prevented by using nanoparticles containing antioxidants. The present study was conducted to investigate the effect of zinc oxide nanoparticles (ZnONP) in rooster semen freezing extender on quality parameters and fertility potential. For this aim, semen samples were collected and diluted in Lake extenders as follows: control: Lake without ZnONP, ZnO100: Lake with 100-µg zinc oxide (ZnO), ZnONP50: Lake with 50-µg ZnONP, ZnONP100: Lake with 100-µg ZnONP and ZnONP200: Lake with 200-µg ZnONP. After freezing and thawing, sperm motility, viability, membrane integrity, morphology, mitochondrial activity, acrosome integrity, DNA fragmentation, lipid peroxidation and ROS, as well as fertility and hatchability were assessed. According to the current results, higher rates of motility, membrane integrity, mitochondrial activity, acrosome integrity and live cells were detected in the ZnO100, ZnONP50 and ZnONP100 groups compared to other groups (p ≤ .05). Yet, the percentage of dead cells, DNA fragmentation, lipid peroxidation and ROS levels were lower in the mentioned groups (p ≤ .05). Furthermore, a higher percentage of fertility was observed in the ZnO100 and ZnONP100 groups than in the control group (p ≤ .05). In conclusion, the use of 100-µg ZnO and 50- to 100-µg ZnONP represents a valuable and safe additive material that could be used to improve the quality and fertility potential of rooster sperm under cryopreservation conditions.


Asunto(s)
Pollos , Criopreservación , Fertilidad , Especies Reactivas de Oxígeno , Preservación de Semen , Motilidad Espermática , Espermatozoides , Óxido de Zinc , Masculino , Animales , Óxido de Zinc/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Especies Reactivas de Oxígeno/metabolismo , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Fertilidad/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas , Crioprotectores/farmacología , Análisis de Semen/veterinaria , Femenino
2.
Biotechnol Lett ; 45(5-6): 719-739, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37074554

RESUMEN

PURPOSE: Purple acid phosphatases (PAPs) includ the largest classes of non-specific plant acid phosphatases. Most characterized PAPs were found to play physiological functions in phosphorus metabolism. In this study, we investigated the function of AtPAP17 gene encoding an important purple acid phosphatase in Arabidopsis thaliana. METHODS: The full-length cDNA sequence of AtPAP17 gene under the control of CaMV-35S promoter was transferred to the A. thaliana WT plant. The generated homozygote AtPAP17-overexpressed plants were compared by the types of analyses with corresponding homozygote atpap17-mutant plant and WT in both + P (1.2 mM) and - P (0 mM) conditions. RESULTS: In the + P condition, the highest and the lowest amount of Pi was observed in AtPAP17-overexpressed plants and atpap17-mutant plants by 111% increase and 38% decrease compared with the WT plants, respectively. Furthermore, under the same condition, APase activity of AtPAP17-overexpressed plants increased by 24% compared to the WT. Inversely, atpap17-mutant plant represented a 71% fall compared to WT plants. The comparison of fresh weight and dry weight in the studied plants showed that the highest and the lowest amount of absorbed water belonged to OE plants (with 38 and 12 mg plant-1) and Mu plants (with 22 and 7 mg plant-1) in + P and - P conditions, respectively. CONCLUSION: The lack of AtPAP17 gene in the A. thaliana genome led to a remarkable reduction in the development of root biomass. Thus, AtPAP17 could have an important role in the root but not shoot developmental and structural programming. Consequently, this function enables them to absorb more water and eventually associated with more phosphate absorption.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo , Glicoproteínas/genética , Fosfatasa Ácida/genética , Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446368

RESUMEN

Melon is a recalcitrant plant for stable genetic transformation. Various protocols have been tried to improve melon transformation efficiency; however, it remains significantly low compared to other plants such as tomato. In this study, the primary focus was on the optimization of key parameters during the inoculation and co-culture steps of the genetic transformation protocol. Our results showed that immersing the explants in the inoculation medium for 20 min significantly enhanced transformation efficiency. During the co-culture step, the use of filer paper, 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES), and a temperature of 24 °C significantly enhanced the melon transformation efficiency. Furthermore, the impact of different ethylene inhibitors and absorbers on the transformation efficiency of various melon varieties was explored. Our findings revealed that the use of these compounds led to a significant improvement in the transformation efficiency of the tested melon varieties. Subsequently, using our improved protocol and reporter-gene construct, diploid transgenic melons successfully generated. The efficiency of plant genetic transformation ranged from 3.73 to 4.83%. Expanding the scope of our investigation, the optimized protocol was applied to generate stable gene-edited melon lines using the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated cytosine base editor and obtained melon lines with editions (C-to-T and C-to-G) in the eukaryotic translation initiation factor 4E, CmeIF4E gene. In conclusion, the optimized melon transformation protocol, along with the utilization of the CRISPR/Cas9-mediated cytosine base editor, provides a reliable framework for functional gene engineering in melon. These advancements hold significant promise for furthering genetic research and facilitating crop improvement in this economically important plant species.


Asunto(s)
Cucumis melo , Cucurbitaceae , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Cucumis melo/genética , Cucurbitaceae/genética , Plantas/genética
4.
BMC Plant Biol ; 22(1): 241, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549883

RESUMEN

BACKGROUND: Viruses are the major threat to commercial potato (Solanum tuberosum) production worldwide. Because viral genomes only encode a small number of proteins, all stages of viral infection rely on interactions between viral proteins and host factors. Previously, we presented a list of the most important candidate genes involved in potato plants' defense response to viruses that are significantly activated in resistant cultivars. Isolated from this list, Aspartic Protease Inhibitor 5 (API5) is a critical host regulatory component of plant defense responses against pathogens. The purpose of this study is to determine the role of StAPI5 in defense of potato against potato virus Y and potato virus A, as well as its ability to confer virus resistance in a transgenic susceptible cultivar of potato (Desiree). Potato plants were transformed with Agrobacterium tumefaciens via a construct encoding the potato StAPI5 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. RESULTS: Transgenic plants overexpressing StAPI5 exhibited comparable virus resistance to non-transgenic control plants, indicating that StAPI5 functions in gene regulation during virus resistance. The endogenous StAPI5 and CaMV 35S promoter regions shared nine transcription factor binding sites. Additionally, the net photosynthetic rate, stomatal conductivity, and maximum photochemical efficiency of photosystem II were significantly higher in virus-infected transgenic plants than in wild-type plants. CONCLUSION: Overall, these findings indicate that StAPI5 may be a viable candidate gene for engineering plant disease resistance to viruses that inhibit disease development.


Asunto(s)
Proteasas de Ácido Aspártico , Potyvirus , Solanum tuberosum , Proteasas de Ácido Aspártico/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Inhibidores de Proteasas/metabolismo , Solanum tuberosum/microbiología
5.
J Fluoresc ; 30(4): 927-938, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32500261

RESUMEN

To green synthesis of highly yield photoluminescence carbon nanofibers/carbon quantum dots by pine fruit the ball milling assisted hydrothermal method was served. Different analysis such as XRD, EDS, elemental mapping and FT-IR analysis were used to study the product structure. The optical properties of the synthesized carbon nanomaterials were investigated by UV-Vis and PL analysis. Also, the effects of hydrothermal time and temperature on the PL intensity were studied. To study the product size and morphology SEM and TEM analysis were served. Also, the nucleation and growth mechanism was studied by TEM images. The results showed the product is composed of very tiny nitrogen-doped carbon dots and carbon nanofibers with high photoluminescence intensity. The photocatalytic activity of the product was investigated by degradation of six dyes namely Acid blue, Eosin Y, Erichrome Black T, Methylene blue, Methyl orange and Methyl. The results showed the product has high photocatalytic activity and it can degrade the dyes with creation reactive oxide species in the aqueous solution. The surface activity of the product was also investigated and it was found it can adsorb Pb2+ and Cd2+ from the water with 100% efficiency. The results showed we can synthesis of useful carbon nanomaterials with high photoluminescence intensity, highly photocatalytic activity and surface adsorption via a simple and fast method with the pine fruit. Graphical abstract.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/síntesis química , Frutas/química , Nanofibras/química , Pinus/química , Puntos Cuánticos/química , Adsorción , Cadmio/análisis , Colorantes Fluorescentes/química , Plomo/análisis , Tamaño de la Partícula , Propiedades de Superficie
6.
Luminescence ; 35(5): 684-693, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31918455

RESUMEN

In this study, highly photoluminescent and photocatalytic Fe2 O3 @carbon quantum dots/graphene oxide nanostructures were synthesized using ball milling-assisted hydrothermal synthesis with hard pistachio shells. Different analyses, such as X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy were used to study the product structure. Scanning electron microscopy and transmission electron microscopy images were used to study product size and morphology. Optical properties of the as-synthesized nanomaterials were investigated using ultraviolet-visible light and photoluminescence analyses. To increase photoluminescence intensity, ethylene diamine tetraacetic acid, polyethylene glycol, polyvinylpyrrolidone, and acetylacetonate anions were used to modify the product surface. Thermal stability of the product was studied using thermal gravimetric analysis. Finally, photocatalytic activity and surface adsorption of the product were investigated; the produce was found to be highly photoluminescent with high photocatalytic and surface activities.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Pistacia/química , Temperatura , Carbono/química , Catálisis , Compuestos Férricos/química , Colorantes Fluorescentes/química , Grafito/química , Nanoestructuras/química , Tamaño de la Partícula , Procesos Fotoquímicos , Puntos Cuánticos/química , Propiedades de Superficie
7.
Planta ; 251(1): 31, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823013

RESUMEN

MAIN CONCLUSION: A high level of the secondary metabolite chicoric acid is produced by intracellular Pi supply and extracellular phosphate limiting in Echinacea purpurea hairy roots. Chicoric acid (CA) is a secondary metabolite which is gained from Echinacea purpurea. It has been found to be one of the most potent HIV integrase inhibitors with antioxidant and anti-inflammatory activities. However, the low-biosynthesis level of this valuable compound becomes an inevitable obstacle limiting further commercialization. Environmental stresses, such as phosphorus (Pi) deficiency, stimulate the synthesis of chemical metabolites, but significantly reduce plant growth and biomass production. To overcome the paradox of dual opposite effect of Pi limitation, we examined the hypothesis that the intracellular Pi supply and phosphate-limiting conditions enhance the total CA production in E. purpurea hairy roots. For this purpose, the coding sequence (CDS) of a purple acid phosphatase gene from Arabidopsis thaliana, AtPAP26, under CaMV-35S promoter was overexpressed in E. purpurea using Agrobacterium rhizogenes strain R15834. The transgenic hairy roots were cultured in a Pi-sufficient condition to increase the cellular phosphate metabolism. A short-term Pi starvation treatment of extracellular phosphate was applied to stimulate genes involved in CA biosynthesis pathway. The overexpression of AtPAP26 gene significantly increased the total APase activity in transgenic hairy roots compared to the non-transgenic roots under Pi-sufficient condition. Also, the transgenic hairy roots showed increase in the level of total and free phosphate, and in root fresh and dry weights compared to the controls. In addition, the phosphate limitation led to significant increase in the expression level of the CA biosynthesis genes. Considering the increase of biomass production in transgenic vs. non-transgenic hairy roots, a 16-fold increase was obtained in the final yield of CA for transgenic E. purpurea roots grown under -P condition compared to +P non-transgenic roots. Our results suggested that the expression of phosphatase genes and phosphate limitation were significantly effective in enhancing the final production yield and large-scale production of desired secondary metabolites in medicinal plant hairy roots.


Asunto(s)
Fosfatasa Ácida/genética , Ácidos Cafeicos/metabolismo , Echinacea/genética , Echinacea/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Succinatos/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética , Biomasa , Vías Biosintéticas/genética , Fósforo/metabolismo , Plantas Modificadas Genéticamente/metabolismo
8.
Luminescence ; 34(7): 689-698, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31157503

RESUMEN

In this experimental study, ZnS nanostructures were synthesized using two hydrothermal and co-precipitation methods with different precursors. Different reagents and precursors were changed to obtain the best product size and morphology. The structure and crystal phase of the products were studied using X-ray diffraction (XRD) patterns. Some structural parameters were calculated using the XRD results and a product composition was obtained by energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FT-IR) spectra to study the chemical composition. The size and morphology of ZnS nanostructures were obtained by scanning electron microscopy (SEM). The optical properties of the synthesized ZnS nanostructures were examined using ultraviolet-visible (UV-Vis) spectra to estimate the optical band gap. Band gap energies were higher than those in the ZnS bulk sample, mainly due to quantum size effects. The photoluminescence (PL) properties of the products were investigated using PL spectra. The results showed the effect of two factors, namely synthesis method and chemical reagents, on the structure parameters, crystallite size, product size and morphology, and optical and PL properties.


Asunto(s)
Luminiscencia , Nanoestructuras/química , Sulfuros/química , Compuestos de Zinc/química , Fenómenos Ópticos , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
9.
PLoS One ; 18(6): e0286809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37289731

RESUMEN

It has been proposed that the composition of the culture medium, especially its amino acids, is an important part of getting microspore androgenesis to occur in some plants. However, there have been far fewer studies done on the Solanaceae family. In this study, we studied what happened to eggplant microspore culture when we mixed casein hydrolysate (0 and 100 mg L-1) with four amino acids: proline (0, 100, 500, and 900 mg L-1), glutamine (0 and 800 mg L-1), serine (0 and 100 mg L-1), and alanine (0 and 100 mg L-1). The results showed that a combination of 800 mg L-1 of glutamine, 100 mg L-1 of serine, 100 mg L-1 of casein hydrolysate, and 500 mg L-1 of proline produced the maximum number of calli per Petri dish (938). Calli had a globular shape and a compact appearance when formed in media containing 500 mg L-1 of proline (alone or combined with serine, alanine, and/or casein hydrolysate). Most of these structures were observed in a medium with 500 mg L-1 of proline, 100 mg L-1 of casein hydrolysate, and 100 mg L-1 of serine. We also investigated what happened when gum arabic (2400, 2600, 3600, 4600, and 5600 mg L-1) was combined with proline (0 and 500 mg L-1), casein hydrolysate (0 and 100 mg L-1), and glutamine (0, 400, and 800 mg L-1). The findings demonstrated the involvement of proline in the increase of calli. Overall, the results give us new information about how amino acids work in eggplant microspore culture and suggest that proline can move this plant's microspore androgenesis pathway forward.


Asunto(s)
Aminoácidos , Solanum melongena , Aminoácidos/metabolismo , Solanum melongena/metabolismo , Glutamina , Prolina , Alanina , Serina
10.
Food Chem ; 355: 129666, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799256

RESUMEN

The gold electrode was functionalized with anti-bisphenol A (BPA) aptamer and captured the BPA as analyte. By dropping the aptamer-modified magnetic Fe3O4/Au nanoparticles solution onto the electrode, a BPA molecule attaches to many aptamers that are in contact with a large number of Fe3O4/Au nanoparticles. The modified electrode were transferred to a solution containing Ag+ ions. Fe3O4/Au nanoparticles reduce the Ag+ ions to Ag0. A potential scan was applied for the oxidation of the Ag0-loaded magnetic nanoparticles to the AgCl. The magnitude of the stripping anodic signal of the Ag0 was related to the concentration of the BPA. The assay shows a detection limit of 0.6 fmol L-1 and linear range of 1 fmol L-1-150 pmol L-1 and. The applicability of the aptasensor is measured by its successful use in the sensing BPA in water, milk and juice samples and measuring BPA migration from different commercial plastic products.


Asunto(s)
Aptámeros de Nucleótidos/química , Compuestos de Bencidrilo/análisis , Técnicas Biosensibles/métodos , Compuestos Férricos/química , Oro/química , Nanopartículas del Metal/química , Fenoles/análisis , Plata/química , Compuestos de Bencidrilo/química , Catálisis , Electrodos , Límite de Detección , Oxidación-Reducción , Fenoles/química
11.
GM Crops Food ; 12(1): 86-105, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33028148

RESUMEN

Potato is the most important non-grain food crop in the world. Viruses, particularly potato virus Y (PVY) and potato virus A (PVA), are among the major agricultural pathogens causing severe reduction in potato yield and quality worldwide. Virus infection induces host factors to interfere with its infection cycle. Evaluation of these factors facilitates the development of intrinsic resistance to plant viruses. In this study, a small G-protein as one of the critical signaling factors was evaluated in plant response to PVY and PVA to enhance resistance. For this purpose, the gene expression dataset of G-proteins in potato plant under five biotic (viruses, bacteria, fungi, nematodes, and insects) and four abiotic (cold, heat, salinity, and drought) stress conditions were collected from gene expression databases. We reduced the number of the selected G-proteins to a single protein, StSAR1A, which is possibly involved in virus inhibition. StSAR1A overexpressed transgenic plants were created via the Agrobacterium-mediated method. Real-time PCR and Enzyme-linked immunosorbent assay tests of transgenic plants mechanically inoculated with PVY and PVA indicated that the overexpression of StSAR1A gene enhanced resistance to both viruses. The virus-infected transgenic plants exhibited a greater stem length, a larger leaf size, a higher fresh/dry weight, and a greater node number than those of the wild-type plants. The maximal photochemical efficiency of photosystem II, stomatal conductivity, and net photosynthetic rate in the virus-infected transgenic plants were also obviously higher than those of the control. The present study may help to understand aspects of resistance against viruses.


Asunto(s)
Potyvirus , Solanum tuberosum , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/virología , Potyvirus/genética , Solanum tuberosum/genética , Solanum tuberosum/virología
12.
Front Plant Sci ; 11: 618716, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679819

RESUMEN

Tolerance to salinity is a complex genetic trait including numerous physiological processes, such as metabolic pathways and gene networks; thereby, identification of genes indirectly affecting, as well as those directly influencing, is of utmost importance. In this study, we identified and elucidated the functional characterization of AtPAP17 and AtPAP26 genes, as two novel purple acid phosphatases associated with high-salt tolerance in NaCl-stressed conditions. Here, the overexpression of both genes enhanced the expression level of AtSOS1, AtSOS2, AtSOS3, AtHKT1, AtVPV1, and AtNHX1 genes, involving in the K+/Na+ homeostasis pathway. The improved expression of the genes led to facilitating intracellular Na+ homeostasis and decreasing the ion-specific damages occurred in overexpressed genotypes (OEs). An increase in potassium content and K+/Na+ ratio was observed in OE17 and OE26 genotypes as well; however, lower content of sodium accumulated in these plants at 150 mM NaCl. The overexpression of these two genes resulted in the upregulation of the activity of the catalase, guaiacol peroxidase, and ascorbate peroxidase. Consequently, the overexpressed plants showed the lower levels of hydrogen peroxide where the lowest amount of lipid peroxidation occurred in these lines. Besides the oxidation resistance, the boost of the osmotic regulation through the increased proline and glycine-betaine coupled with a higher content of pigments and carbohydrates resulted in significantly enhancing biomass production and yield in the OEs under 150 mM NaCl. High-salt stress was also responsible for a sharp induction on the expression of both PAP17 and PAP26 genes. Our results support the hypothesis that these two phosphatases are involved in plant responses to salt stress by APase activity and/or non-APase activity thereof. The overexpression of PAP17 and PAP26 could result in increasing the intracellular APase activity in both OEs, which exhibited significant increases in the total phosphate and free Pi content compared to the wild-type plants. Opposite results witnessed in mutant genotypes (Mu17, Mu26, and DM), associating with the loss of AtPAP17 and AtPAP26 functions, clearly confirmed the role of these two genes in salt tolerance. Hence, these genes can be used as candidate genes in molecular breeding approaches to improve the salinity tolerance of crop plants.

13.
Front Plant Sci ; 11: 565865, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101335

RESUMEN

Purple acid phosphatases (PAP)-encoding genes form a complex network that play a critical role in plant phosphate (Pi) homeostasis. Mostly, the functions of PAPs were investigated individually. However, the interactions of most of these genes in response to various concentrations of available Pi remain unknown. In this study, the roles of AtPAP17 and AtPAP26 genes, and their relationship within Pi homeostasis context were investigated. Surprisingly, atpap17 and atpap26 mutants not only showed no obvious developmental defects, but also produced higher biomass in compare to wild type (WT) plants under normal growth conditions. Comparing gene expression patterns of these mutants with WT plant, we identified a set of genes up-regulated in mutant plants but not in WT. Based on these unexpected results and up-regulation of AtPAP17 and AtPAP26 genes by the loss of function of each other, the hypothesis of compensation relationship between these genes in Pi homeostasis was assessed by generating atpap17/atpap26 double mutants. Observation of developmental defects in atpap17/atpap26 mutant but not in single mutants indicated a compensation relationship between AtPAP17 and AtPAP26 genes in Pi homeostasis network. Taken together, these results demonstrate the activation of AtPAP17 and AtPAP26 genes to buffer against the loss of function of each other, and this compensation relationship is vital for Arabidopsis growth and development.

14.
Sci Rep ; 10(1): 5427, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214149

RESUMEN

Paclitaxel is the top-selling chemotherapeutic drug used for the treatment of lung, ovarian and breast cancer as well as Kaposi's sarcoma. Cell suspension culture (CSC) of Corylus avellana has been addressed as a promising alternative for producing paclitaxel. In this study, endophytic fungus strain YEF33 was isolated from Taxus baccata and identified as Coniothyrium palmarum. The effects of the elicitors derived from this fungus including cell extract, culture filtrate and cell wall (CW) and also chitin, alone or in combination with Methyl-ß-Cyclodextrin (MBCD), on paclitaxel biosynthesis in C. avellana CSC were assayed for the first time. CW of C. palmarum was the most efficient fungal elicitor for paclitaxel biosynthesis in C. avellana CSC. The results revealed that MBCD affected paclitaxel biosynthesis differently depending on fungal elicitor type and vice versa. MBCD, either alone or in combination with fungal elicitors, induced a high secretion of paclitaxel, suggesting the decrement of toxicity and retro-inhibition processes of paclitaxel for cells. The joint effects of C. palmarum CW (2.5% (v/v) on 17th day) and 50 mM MBCD synergistically enhanced paclitaxel biosynthesis (402.4 µg l-1; 5.8-fold), 78.6% of which (316.5 µg l-1) were secreted into culture medium, a level 146% higher than that in control.


Asunto(s)
Ascomicetos/metabolismo , Pared Celular/metabolismo , Corylus/efectos de los fármacos , Corylus/metabolismo , Paclitaxel/metabolismo , Taxus/metabolismo , beta-Ciclodextrinas/farmacología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Medios de Cultivo/metabolismo , Suspensiones/metabolismo
15.
PLoS One ; 15(8): e0237478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32853208

RESUMEN

Paclitaxel as a microtubule-stabilizing agent is widely used for the treatment of a vast range of cancers. Corylus avellana cell suspension culture (CSC) is a promising strategy for paclitaxel production. Elicitation of paclitaxel biosynthesis pathway is a key approach for improving its production in cell culture. However, optimization of this process is time-consuming and costly. Modeling of paclitaxel elicitation process can be helpful to predict the optimal condition for its high production in cell culture. The objective of this study was modeling and forecasting paclitaxel biosynthesis in C. avellana cell culture responding cell extract (CE), culture filtrate (CF) and cell wall (CW) derived from endophytic fungus, either individually or combined treatment with methyl-ß-cyclodextrin (MBCD), based on four input variables including concentration levels of fungal elicitors and MBCD, elicitor adding day and CSC harvesting time, using adaptive neuro-fuzzy inference system (ANFIS) and multiple regression methods. The results displayed a higher accuracy of ANFIS models (0.94-0.97) as compared to regression models (0.16-0.54). The great accordance between the predicted and observed values of paclitaxel biosynthesis for both training and testing subsets support excellent performance of developed ANFIS models. Optimization process of developed ANFIS models with genetic algorithm (GA) showed that optimal MBCD (47.65 mM) and CW (2.77% (v/v)) concentration levels, elicitor adding day (16) and CSC harvesting time (139 h and 41 min after elicitation) can lead to highest paclitaxel biosynthesis (427.92 µg l-1). The validation experiment showed that ANFIS-GA method can be a promising tool for selecting the optimal conditions for maximum paclitaxel biosynthesis, as a case study.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Corylus/química , Paclitaxel/biosíntesis , Algoritmos , Corylus/metabolismo , Hongos/química , Hongos/metabolismo , Modelos Lineales , Células Vegetales/química , Células Vegetales/metabolismo , beta-Ciclodextrinas/química
16.
Galen Med J ; 8: e1549, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34466526

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a common metabolic disease worldwide and has many complications. Vascular events are the major complication of DM, which have an important effect on mortality and disability. Physical activity (PA) enhances the vascular function by several pathways. The aim of this study was to evaluate the relationship between PA and vascular diseases in patients with DM. MATERIALS AND METHODS: This study was performed as a case-control study extracted from a prospective epidemiological research study in Iran. Patients with type 2 DM for more than six months as a case group were compared to sex- and age-matched healthy control subjects. The metabolic equivalent of task score was used to evaluate the level of PA and blood glucose, lipid profile, body mass index, overweight, dyslipidemia, glomerular filtration rate, myocardial infarction, unstable angina, and stroke. RESULTS: Overall, 1242 patients with DM were extracted, and 2484 non-DM subjects were investigated. In the case group, 355 (28.6%) and 887 (71.4%) subjects were men and women, respectively, and 710 (28.6%) men and 1774 (71.4%) women were in the control group. The mean metabolic equivalent of task score was 30 and 40.97 in the DM and non-DM groups, respectively (P˂0.001). The frequency of myocardial infarction, stroke, and cardiac ischemia was 44 (3.5%), 37 (3%), and 267 (21.5%) in the DM group, and 54 (2.2%), 43 (1.7%), and 389 (15.7%) in the non-DM group, respectively. CONCLUSION: The incidence of vascular events associated with PA level in patients with DM and adherence to regular PA reduced vascular events and DM complications.

17.
Daru ; 26(2): 129-142, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30377988

RESUMEN

BACKGROUND: Paclitaxel is a potent antitumor alkaloid widely used for the treatment of several cancer types. This valuable secondary metabolite naturally exists in the inner bark of Taxus species in very low amounts. The small-scale production of paclitaxel in Taxus cell cultures requires utilization of several elicitors. OBJECTIVE: The main objective of this work was to identify key genes that encode rate-limiting enzymes in paclitaxel biosynthesis pathway by investigating the possible relationship between paclitaxel production and a set of 13 involved genes' relative expression in Taxus baccata L. cell suspension cultures affected by coronatine and methyl-ß-cyclodextrin. METHODS: In the present research, the most important key genes were identified using gene expression profiling evaluation and paclitaxel production assessment in Taxus baccata L. cell cultures affected by mentioned elicitors. RESULTS AND CONCLUSION: Gene expression levels were variably increased using methyl-ß-cyclodextrin, and in some cases, a synergistic effect on transcript accumulation was observed when culture medium was supplemented with both elicitors. It was revealed that DBAT, BAPT, and DBTNBT are the most important rate-limiting enzymes in paclitaxel biosynthesis pathway in Taxus baccata L. cell suspension cultures under coronatine and methyl-ß-cyclodextrin elicitation condition. Moreover, PAM was identified as one of the important key genes especially in the absence of ß-phenylalanine. In cell cultures affected by these elicitors, paclitaxel was found largely in the culture media (more than 90%). The secretion of this secondary metabolite suggests a limited feedback inhibition and reduced paclitaxel toxicity for producer cells. It is the result of the ABC gene relative expression level increment under methyl-ß-cyclodextrin elicitation and highly depends on methyl-ß-cyclodextrin's special property (complex formation with hydrophobic compounds). Paclitaxel biosynthesis was obviously increased due to the effect of coronatine and methyl-ß-cyclodextrin elicitation, leading to the production level of 5.62 times higher than that of the untreated cultures. Graphical abstract Rate Limiting Enzymes in Paclitaxel Biosynthesis Pathway: DBAT, BAPT, DBTNBT and PAM.


Asunto(s)
Aminoácidos/farmacología , Técnicas de Cultivo de Célula/métodos , Indenos/farmacología , Paclitaxel/biosíntesis , Proteínas de Plantas/genética , Taxus/citología , beta-Ciclodextrinas/farmacología , Células Cultivadas , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes y Vías Metabólicas , Reacción en Cadena en Tiempo Real de la Polimerasa , Taxus/enzimología , Taxus/metabolismo
18.
Iran J Biotechnol ; 16(1): e2024, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30555844

RESUMEN

BACKGROUND: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element. OBJECTIVES: In this study, the overexpression effect of AtPAP26, one of the main contributors in retrieving Pi from intracellular and extracellular compounds, was evaluated from various viewes in tobacco plant. MATERIALS AND METHODS: As a heterologous expression system, the encoding cDNA sequence of AtPAP26 was transferred into tobacco plants. RESULTS: A high growth rate of the transgenic lines was observed which could be due to an increased APase activity, leading to the high total phosphorus as well as the free Pi content of the transgenic plants. Interestingly, a significant increased activity of the other APases was also noticed, indicating a networking among them. These were accompanied by less branched and short primary roots and a decreased lateral root numbers grown in Pi-starvation condition compared to the wild type seedlings. Besides, a delayed germination and dwarf phenotype indicates the possible reduction in gibberellic acid biosynthesis in the transgenic lines. CONCLUSIONS: Such transgenic plants are of interest not only for increased yield but also for the reduced need for chemical fertilizers and removal of excessive Pi accumulation in soils as a consequence of fertilizers' or poultry wastes' over-usage.

19.
Comb Chem High Throughput Screen ; 17(2): 183-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23962129

RESUMEN

In this paper, CuInS2 (CIS) nanoparticles were synthesized successfully via a new copper precursor [bis(acetylacetonato)copper(II)], [Cu(acac)2]; at room temperature by ultrasonic method. The effect of sulfur source, solvent, and reaction time was investigated on product morphology and particle size. A series of analyses was performed to characterize the CuInS2 microsphere including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. CuInS2 nanoparticles were prepared and coated on FTO. Later, the coated FTO was sintered so that a compact and dense CuInS2 film was produced and measured for photovoltaic characteristics such as Voc, Jsc and FF.


Asunto(s)
Cobre/química , Indio/química , Nanopartículas/química , Sulfuros/química , Suministros de Energía Eléctrica , Nanopartículas/ultraestructura , Nanotecnología/métodos , Tamaño de la Partícula , Energía Solar , Ultrasonido/métodos
20.
Gene Expr Patterns ; 14(1): 9-18, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24012521

RESUMEN

Purple acid phosphatase (PAP; EC 3.1.3.2) enzymes are metallophosphoesterases that hydrolysis phosphate ester bonds in a wide range of substrates. Twenty-nine PAP-encoding loci have been identified in the Arabidopsis genome, many of which have multiple transcript variants expressed in response to diverse environmental conditions. Having analyzed T-DNA insertion mutants, we have provided strong pieces of evidence that AtPAP9 locus encodes at least two types of transcripts, designated as AtPAP9-1 and AtPAP9-2. These transcript variants expressed distinctly during the course of growth in medium containing sufficient phosphate or none. Further histochemical analysis by the use of AtPAP9-1 promoter fused to ß-glucuronidase reporter gene indicated the expression of this gene is regulated in a tissue-specific manner. AtPAP9-1 was highly expressed in stipule and vascular tissue, particularly in response to fungal infection. Subcellular localization of AtPAP9-1:green fluorescent fusion protein showed that it must be involved in plasma membrane and cell wall adhesion.


Asunto(s)
Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Arabidopsis/enzimología , Genes de Plantas , Glicoproteínas/genética , Glicoproteínas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Membrana Celular/fisiología , Pared Celular/fisiología , ADN Bacteriano/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Raíces de Plantas/genética , Brotes de la Planta/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA