Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Bot ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712747

RESUMEN

Understanding phenology, its genetics and agronomic consequences, is critical for crop adaptation. Here we aim at (1) characterising lentil response to photoperiod with a focus on five loci: the lentil ELF3 ortholog Sn, two loci linked to clusters of lentil FT orthologs and two loci without candidates in chromosomes 2 and 5 (exp. 1: 36 lines, short and long day in phytotron); (2) establishing phenology-yield relationship (exp. 2: 25 lines, 11 field environments). A vintage perspective, where we quantify time trends in phenotype over three decades of breeding, links both experiments. Yield increased linearly from older to newer varieties at 29 kg ha-1 yr-1 or 1.5% yr-1, correlated negatively with flowering time in both winter- and summer-rainfall regimes, and decoupled from biomass in favourable environments. Time to flowering shortened from older to newer varieties at -0.56 % yr-1 in the field, and -0.42 % yr-1 (short day) and -0.99 % yr-1 (long day) in the phytotron. Early-flowering lines of diverse origin carried multiple early alleles for the five loci, indicating that at least some of these loci affect phenology additively. Current germplasm primarily features the early flowering haplotype for an FTb cluster region, hence the potential to increase phenological diversity with yield implications.

2.
J Exp Bot ; 65(8): 1981-95, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24638898

RESUMEN

Crop yield in dry environments can be improved with complementary approaches including selecting for yield in the target environments, selecting for yield potential, and using indirect, trait- or genomic-based methods. This paper (i) outlines the achievements of direct selection for yield in improving drought adaptation, (ii) discusses the limitations of indirect approaches in the context of levels of organization, and (iii) emphasizes trade-offs and synergies between nitrogen nutrition and drought adaptation. Selection for yield in the water- and nitrogen-scarce environments of Australia improved wheat yield per unit transpiration at a rate of 0.12kg ha(-1) mm(-1) yr(-1); for indirect methods to be justified, they must return superior rates of improvement, achieve the same rate at lower cost or provide other cost-effective benefits, such as expanding the genetic basis for selection. Slow improvement of crop adaptation to water stress using indirect methods is partially related to issues of scale. Traits are thus classified into three broad groups: those that generally scale up from low levels of organization to the crop level (e.g. herbicide resistance), those that do not (e.g. grain yield), and traits that might scale up provided they are considered in a integrated manner with scientifically sound scaling assumptions, appropriate growing conditions, and screening techniques (e.g. stay green). Predicting the scalability of traits may help to set priorities in the investment of research efforts. Primary productivity in arid and semi-arid environments is simultaneously limited by water and nitrogen, but few attempts are made to target adaptation to water and nitrogen stress simultaneously. Case studies in wheat and soybean highlight biological links between improved nitrogen nutrition and drought adaptation.


Asunto(s)
Agricultura/normas , Productos Agrícolas/fisiología , Sequías , Nitrógeno/metabolismo , Fenómenos Fisiológicos de las Plantas , Selección Genética , Adaptación Fisiológica , Productos Agrícolas/genética , Ambiente , Estrés Fisiológico
3.
J Exp Bot ; 65(20): 5975-88, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25180109

RESUMEN

Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Vitis/metabolismo , Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Calor , Malatos/metabolismo , Metaboloma , Temperatura , Vitis/genética , Ácido gamma-Aminobutírico/metabolismo
4.
Sci Rep ; 14(1): 15833, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982112

RESUMEN

Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.


Asunto(s)
Cucurbitaceae , Sequías , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Cucurbitaceae/virología , Cucumovirus/fisiología , Cucumovirus/patogenicidad , Hojas de la Planta/virología , Virus de Plantas/fisiología , Agua/metabolismo
5.
Bull Entomol Res ; 99(5): 467-78, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19203400

RESUMEN

Understanding the compensatory responses of crops to pest damage is important in developing pest thresholds. Compensation for pest damage in crops can occur at the plant level, where the architecture, growth dynamics and allocation patterns of damaged plants are altered, allowing them to recover or, at the crop level, where differential damage between plants may alter plant-to-plant interactions. We investigated growth and yield of cotton (Gossypium hirsutum L.) following non-uniform manual defoliation of seedlings. This partially replicates real pest damage and is valuable in understanding crop-level responses to damage because it can be inflicted precisely. Damage distributions included damaging 0, 25, 50, 75 or 100% of the plants. Damage intensity for the damaged plants was varied by removing 100 or 75% of each true leaf when plants had two, four and six true leaves. At the crop level, yield loss increased as the proportion of plants damaged and intensity of damage per damaged plant increased. Neighbour interactions occurred; undamaged plants with damaged neighbours grew larger and yielded better than undamaged plants with undamaged neighbours, while the converse applied for damaged plants with undamaged neighbours. Neighbour interactions were influenced by the intensity of damage and were stronger when 100% of the leaf area was removed than when 75% was removed. At the crop level, when compared with yield estimates based on yield of plants from uniformly damaged or undamaged plots, these interactions resulted in higher yield than expected (+8%). This suggests that damage distribution may have to be considered in studies where artificial or real pest damage is inflicted uniformly on plants.


Asunto(s)
Gossypium/crecimiento & desarrollo , Control de Plagas/métodos , Animales , Dinámica Poblacional
6.
Oecologia ; 101(3): 274-281, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28307047

RESUMEN

Measurements of the profiles of leaf area and leaf nitrogen were made on five occasions from midflowering to maturity (53, 61, 70, 78 and 83 days after emergence, DAE) in sunflower crops grown at contrasting density (2.4 and 4.8 plants m-2) and nitrogen supply (0 and 5 g N m-2 at emergence) in the summer in Buenos Aires, Argentina. As the crops matured, nitrogen was withdrawn unequally from all leaf positions and leaves senesced from the bases of the canopies. A model was used to estimate the daytime net photosynthesis (Pc) of canopies of defined leaf area and nitrogen content under the observed conditions of temperature and irradiance. Comparisons were made between the observed profiles of leaf nitrogen and those that would maximise Pc (the optimal profiles). The observed nitrogen profiles were sub-optimal at mid-flowering, except in the low-density, low-nitrogen treatment. The differences were most marked in the high-nitrogen treatments which held 'excessive' nitrogen in their lower canopies. As the canopies matured and nitrogen was mobilised to the grain, leaf area index and total nitrogen content decreased and optimal profiles changed shape from exponential to linear. During this period observed profiles became more optimal. There was, however, little difference in Pc between observed and optimal profiles. The maximum difference was 3.2% observed in the low-density, high-nitrogen treatment at DAE 53. The comparison of actual and optimal profiles as leaf nitrogen content (mg N) in addition to the more commonly used specific leaf nitrogen (SLN, g N m-2 leaf) explains this result because relatively large changes inSLN in the small leaves at the top of canopies have little effect on Pc. The study shows that leaf nitrogen content is an appropriate basis for comparison of canopy nitrogen profiles in sunflower.

7.
Oecologia ; 95(4): 488-494, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28313288

RESUMEN

In vegetative canopies of many species, the vertical gradient of lamina nitrogen concentration (NW) parallels the profile of light distribution in such a way that the actual nitrogen partitioning approaches the optimum pattern for canopy photosynthesis. This paper evaluates the hypothesis that a strong sink for nitrogen, viz. growing grain, affects the pattern of lamina nitrogen distribution usually described for vegetative canopies. The light and NW profiles of sunflower (Helianthus annuus L.) crops were characterised from anthesis to physiological maturity. The factorial combination of two plant populations (2.4 and 4.8 plants m-2) and two levels of nitrogen supply (0 and 5 g N m-2) were the sources of variation for NW and light profiles. Before the onset of nitrogen accumulation in grain, the pattern of NW was similar to that described for other species and it was related to the distribution of light in the canopy. Important changes in the profile of NW occurred during grain filling that were unrelated to the light regime. Nitrogen was mobilised from leaves in all positions in the canopy and the rate of NW change was greater in leaves closer to the grain, which were also the leaves where nitrogen was more concentrated. It is concluded that the physiological mechanisms involved in determining the distribution of leaf nitrogen in vegetative canopies do not apply to sunflower during grain filling.

8.
Ann Bot ; 91(7): 795-805, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730066

RESUMEN

Links were investigated between allometry of plant growth and dynamics of size structure of well-fertilized, irrigated crops of soybean (Glycine max L.), sunflower (Helianthus annuus L.) and maize (Zea mays L.) grown at standard plant-population densities (D), as in commercial crops (D = 30, 6 and 8.5 plants m-2, respectively), and at high densities (2D). Patterns of size-dependent growth of shoot and seed mass accumulation were distinctly different among species. In soybean and sunflower, non-linear relationships between size and subsequent growth led to strong hierarchical populations in terms of both shoot and seed biomass. Curvilinear (soybean) and sigmoid (sunflower) size-dependent growth determined strongly asymmetrical (soybean) and bimodal (sunflower) frequency distributions of shoot biomass indicating predominantly size asymmetrical competition among individuals. In comparison, a lower plant-to-plant variation coupled with a typical linear allometry of growth to plant size indicated symmetrical two-sided plant interference in maize. Despite the weak development of hierarchies in shoot biomass, a strong inequality in reproductive output developed in crowded populations of maize indicating an apparent breakage of reproductive allometry.


Asunto(s)
Biomasa , Magnoliopsida/crecimiento & desarrollo , Fertilidad/fisiología , Helianthus/crecimiento & desarrollo , Modelos Biológicos , Brotes de la Planta/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA