Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 33(1): 126-139, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29965797

RESUMEN

The circadian clock is a critical regulator of immune function. We recently highlighted a role for the circadian clock in a mouse model of pulmonary inflammation. The epithelial clock protein Bmal1 was required to regulate neutrophil recruitment in response to inflammatory challenge. Bmal1 regulated glucocorticoid receptor (GR) recruitment to the neutrophil chemokine, CXC chemokine ligand 5 (CXCL5), providing a candidate mechanism. We now show that clock control of pulmonary neutrophilia persists without rhythmic glucocorticoid availability. Epithelial GR-null mice had elevated expression of proinflammatory chemokines in the lung under homeostatic conditions. However, deletion of GR in the bronchial epithelium blocked rhythmic CXCL5 production, identifying GR as required to confer circadian control to CXCL5. Surprisingly, rhythmic pulmonary neutrophilia persisted, despite nonrhythmic CXCL5 responses, indicating additional circadian control mechanisms. Deletion of GR in myeloid cells alone did not prevent circadian variation in pulmonary neutrophilia and showed reduced neutrophilic inflammation in response to dexamethasone treatment. These new data show GR is required to confer circadian control to some inflammatory chemokines, but that this alone is insufficient to prevent circadian control of neutrophilic inflammation in response to inhaled LPS, with additional control mechanisms arising in the myeloid cell lineage.-Ince, L. M., Zhang, Z., Beesley, S., Vonslow, R. M., Saer, B. R., Matthews, L. C., Begley, N., Gibbs, J. E., Ray, D. W., Loudon, A. S. I. Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells.


Asunto(s)
Ritmo Circadiano/inmunología , Células Epiteliales/inmunología , Macrófagos Peritoneales/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Receptores de Glucocorticoides/fisiología , Sistema Respiratorio/inmunología , Animales , Células Cultivadas , Quimiocina CXCL5/metabolismo , Ritmo Circadiano/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucocorticoides/farmacología , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Transducción de Señal
2.
Curr Biol ; 25(20): 2651-62, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26412130

RESUMEN

Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3(+)) or short (CHGA(+)) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation.


Asunto(s)
Relojes Circadianos , Fotoperiodo , Ovinos/fisiología , Tirotrofos/fisiología , Animales , Masculino
3.
Endocrinology ; 154(6): 2081-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584857

RESUMEN

Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor.


Asunto(s)
Proteínas Portadoras/genética , Ayuno , Hibernación/genética , Tiorredoxinas/genética , Activación Transcripcional , Animales , Proteínas Portadoras/metabolismo , Frío , Cricetinae , Desoxiglucosa/farmacología , Femenino , Perfilación de la Expresión Génica , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiorredoxinas/metabolismo
4.
Curr Biol ; 22(1): 70-7, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22197240

RESUMEN

The ability of mammals to maintain a constant body temperature has proven to be a profound evolutionary advantage, allowing members of this class to thrive in most environments on earth. Intriguingly, some mammals employ bouts of deep hypothermia (torpor) to cope with reduced food supply and harsh climates [1, 2]. During torpor, physiological processes such as respiration, cardiac function, and metabolic rate are severely depressed, yet the neural mechanisms that regulate torpor remain unclear [3]. Hypothalamic responses to energy signals, such as leptin, influence the expression of torpor [4-7]. We show that the orphan receptor GPR50 plays an important role in adaptive thermogenesis and torpor. Unlike wild-type mice, Gpr50(-/-) mice readily enter torpor in response to fasting and 2-deoxyglucose administration. Decreased thermogenesis in Gpr50(-/-) mice is not due to a deficit in brown adipose tissue, the principal site of nonshivering thermogenesis in mice [8]. GPR50 is highly expressed in the hypothalamus of several species, including man [9, 10]. In line with this, altered thermoregulation in Gpr50(-/-) mice is associated with attenuated responses to leptin and a suppression of thyrotropin-releasing hormone. Thus, our findings identify hypothalamic circuits involved in torpor and reveal GPR50 to be a novel component of adaptive thermogenesis in mammals.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Leptina/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Ayuno , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Transducción de Señal , Termogénesis , Hormona Liberadora de Tirotropina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA