RESUMEN
Exposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes. We provide evidence from beta-diversity analyses that paternal diet and maternal behavior induced community-wide shifts to the adult offspring gut microbiome. Additionally, we show that paternal HFD significantly altered the adult offspring Firmicutes to Bacteroidetes ratio, an indicator of obesogenic potential in the gut microbiome. Additional machine-learning analyses indicated that microbial species driving these differences converged on Bifidobacterium pseudolongum. These results suggest that differences in early-life care induced by paternal diet and maternal care significantly influence the microbiota composition of offspring through the microbiota-gut-brain axis, having implications for adult stress reactivity.
Asunto(s)
Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Padre , Heces/microbiología , Femenino , Humanos , Masculino , ARN Ribosómico 16S/genética , RatasRESUMEN
Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.