Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Pharm Sci ; 194: 106692, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181870

RESUMEN

In this work, five novel phosphonium salts derived from the Michael reaction were screened for their antiplatelet activity. Our findings revealed that compounds 2a, 2b, 2c, and 2d significantly inhibit platelet aggregation triggered by ADP or collagen (P < 0.001). Notably, compound 2c inhibited the arachidonic acid pathway (P < 0.001). Moreover, the selected compounds reduce CD62-P expression and inhibit GPIIb/IIIa activation. The interactions of the active compounds with their targets, ADP and collagen receptors, P2Y12 and GPVI respectively were investigated in silico using molecular docking studies. The results revealed a strong affinity of the active compounds for P2Y12 and GPVI. Additionally, cytotoxicity assays on platelets, erythrocytes, and human embryonic kidney HEK293 cells showed that compounds 2a, 2c and 2d were non-toxic even at high concentrations. In summary, our study shows that phosphonium salts can have strong antiplatelet power and suggests that compounds 2a, 2c and 2d could be promising antiplatelet agents for the management of cardiovascular diseases.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Sales (Química) , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria , Plaquetas/metabolismo
2.
Med Oncol ; 40(11): 309, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773302

RESUMEN

In this study, we conducted a comprehensive assessment of the cytotoxicity of three glucocorticoids, namely Hydrocortisone, Dexamethasone, and Methylprednisolone, using three different human cell lines: MDA-MB-231, MCF-7 (both adenocarcinoma cell lines), and HEK293 (kidney epithelial cell line). At lower concentrations exceeding 50 µM, we did not observe any significant toxic effects of these glucocorticoids. However, when exposed to higher concentrations, Hydrocortisone exhibited dose-dependent cytotoxic effects on all three cell lines, with calculated IC50 values of 12 ± 0.6 mM for HEK293, 2.11 ± 0.05 mM for MDA-MB-231, and 2.73 ± 0.128 mM for MCF-7 cells after 48 h of exposure. Notably, Hydrocortisone, at its respective IC50 concentrations, demonstrated an inhibitory effect on the proliferation of the cancer cell lines, as evidenced by a substantial reduction in BrdU absorbance in a dose-dependent manner, coupled with a markedly reduced rate of colony formation in treated cells. Furthermore, Hydrocortisone exhibited remarkable anti-migratory properties in MDA-MB-231 and MCF-7 cells, and it induced cell cycle arrest in the SubG1 phase in MDA-MB-231 cells. In addition to these effects, Hydrocortisone triggered apoptosis in both cancer cell types, leading to observable morphological changes. This apoptotic response was characterized by a significant increase in the activity of caspase-3, which was time-dependent. Additionally, Hydrocortisone downregulated the expression of anti-apoptotic Bcl-2 proteins. In summary, our findings underscore the safety of clinical doses in terms of cell toxicity meanwhile increased concentration were showing an anti-proliferative potential of Hydrocortisone, particularly against adenocarcinoma breast cancer cell lines.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Línea Celular Tumoral , Glucocorticoides/farmacología , Hidrocortisona/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Células HEK293 , Antineoplásicos/farmacología , Apoptosis , Riñón , Proliferación Celular
3.
3 Biotech ; 12(3): 78, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35251881

RESUMEN

Misidentification of human cell lines has previously led to confusing results during cell culture experiments. Although several enzymatic as well as molecular analysis approaches have been developed for cell-line authentication, these methods remain costly. In the present paper, we describe a simple chemical alternative based on known compound cell cytotoxicity. In addition to cisplatin, a pool of eight tamoxifen derivative compounds was used to compare the cytotoxic effects on three different breast cancer cell lines: MCF-7, T47D and MDA-MB-231. Our results show that four out of the eight cytotoxic-related compounds allowed to distinguish the different cell lines based on their IC50 (the half maximal inhibitory concentration) values which are cell type dependent. The remaining chemicals, particularly the most cytotoxic P15, showed close IC50 values for all the cell lines. Interestingly, flow cytometry experiments have identified notable differences among the three cell lines treated with P15. T47D and MDA-MB231 cells were blocked in SubG1 phase and S phase, respectively, while no significant change in cell cycle profile was noticed for MCF-7 cells. Differences were also noted at the level of caspase-3 activity and cell proliferation in P15-treated cells.

4.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269491

RESUMEN

Plants are an important source of pharmacologically active compounds. In the present work, we characterize the impact of black cumin (Nigella sativa L.) aqueous extracts on a yeast model of p53-dependent apoptosis. To this end, the Saccharomyces cerevisiae recombinant strain over-expressing p53 was used. The over-expression of p53 triggers the expression of apoptotic markers: the externalization of phosphatidylserine, mitochondrial defect associated with cytochrome-c release and the induction of DNA strand breaks. These different effects were attenuated by Nigella sativa L. aqueous extracts, whereas these extracts have no effect on the level of p53 expression. Thus, we focus on the anti-apoptotic molecules present in the aqueous extract of Nigella sativa L. These extracts were purified and characterized by complementary chromatographic methods. Specific fluorescent probes were used to determine the effect of the extracts on yeast apoptosis. Yeast cells over-expressing p53 decrease in relative size and have lower mitochondrial content. The decrease in cell size was proportional to the decrease in mitochondrial content and of mitochondrial membrane potential (ΔΨm). These effects were prevented by the purified aqueous fraction obtained by fractionation with different columns, named C4 fraction. Yeast cell death was also characterized by reactive oxygen species (ROS) overproduction. In the presence of the C4 fraction, ROS overproduction was strongly reduced. We also noted that the C4 fraction promotes the cell growth of control yeast cells, which do not express p53, supporting the fact that this purified extract acts on cellular mediators activating cell proliferation independently of p53. Altogether, our data obtained on yeast cells over-expressing p53 demonstrate that anti-apoptotic molecules targeting p53-induced apoptosis associated with mitochondrial dysfunction and ROS overproduction are present in the aqueous extracts of Nigella seeds and in the purified aqueous C4 fraction.


Asunto(s)
Nigella sativa , Apoptosis , Nigella sativa/química , Nigella sativa/metabolismo , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Semillas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
In Vitro Cell Dev Biol Anim ; 57(4): 477-484, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33876341

RESUMEN

In ecotoxicology, in vitro testing on cell cultures represents an ideal alternative to in vivo strategies for emerging contaminants. These tests have limited use particularly with marine invertebrates like the clams Ruditapes decussatus. In the present study, a primary culture of R. decussatus haemocytes was realized for the first time in order to determine the effect of metals (copper, zinc, and cobalt) on haemocyte parameters like viability and phagocytosis. Results showed that (i) among the studied medium, the modified Leibovitz (L-15) is the best for R. decussatus haemocytes primary culture. (ii) The primary culture system used here represents a suitable in vitro model for assessing cytotoxic responses, (iii) a decrease of cell viability and phagocytosis after 24 h exposure to 100 µg mL-1 CoSO4 and an increase of phagocytosis after 24 h exposure to 50 µg mL-1CuSO4.


Asunto(s)
Bivalvos/citología , Hemocitos/efectos de los fármacos , Metales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bivalvos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hemocitos/citología , Humanos , Fagocitosis/efectos de los fármacos , Cultivo Primario de Células/métodos , Zinc/toxicidad
6.
Sci Rep ; 11(1): 779, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436984

RESUMEN

This study investigates the optimization of the culture conditions for enhancing Photorhabdus temperata biopesticide production using wastewater (WS4) as a raw material. Box-Behnken design (BBD) was used to evaluate the effects of carbon to nitrogen ratio (C/N), sodium chloride concentration and inoculum size on P. temperata biomass production and insecticidal activity. For an enhanced biopesticide production, the optimum operating conditions were as follows: inoculum size = 4%; C/N ratio = 12.5 and [NaCl] = 4 g/L for two responses. 1.95 and 2.75 fold improvements in oral toxicity and biomass production were respectively obtained in the cost-effective medium developed in this study (WS4 I) using the three variables at their optimal values. Under the optimized conditions, WS4 I-grown cells exhibited higher membrane integrity according to flow cytometry analysis since dead cells presented only 9.2% compared to 29.2% in WS4. From batch fermentations carried out in WS4 I and WS4, P. temperata kinetic parameters in terms of biomass production and substrate consumption rates were modeled. The obtained results showed that the maximum specific growth rate in WS4 I was of 0.43 h-1 while that obtained in WS4 was of 0.14 h-1. In addition, the efficiency of P. temperata to metabolize organic carbon was enhanced by optimizing the culture conditions. It reached 72.66% instead of 46.18% in the control fermentation after 10 h of incubation. Under the optimized conditions, P. temperata cells showed the highest specific consumption rate resulting in a toxin synthesis improvement.

7.
Sci Rep ; 9(1): 4389, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867462

RESUMEN

Latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) plays an important role in EBV-induced cell transformation. Down-regulation of the LMP1 expression had shown promising results on cancer cell therapy. In this study, we identified by Phage display a novel peptide called B1.12 (ACPLDLRSPCG) which selectively binds to the extracellular loop (B1) of the LMP1 oncoprotein as demonstrated by molecular docking, NMR and ITC. Using an LMP1 expressing cell line, we showed that B1.12 decreased cell viability, and induced G0/G1 cell cycle arrest. In addition, the expression of A20, pAkt, and pNFkb (pRelA536) in C666-1 cells treated with B1.12 decreased compared to the untreated cells. In conclusion, we selected a novel peptide able to bind specifically to the extracellular loop of LMP1 and thus modulate its oncogenic properties.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Péptidos/farmacología , Unión Proteica
8.
PLoS One ; 12(7): e0180680, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704406

RESUMEN

p53 over expression in yeast results in cell death with typical markers of apoptosis such as DNA fragmentation and phosphatidylserine externalization. We aimed to substitute/supplement classical fluorescent techniques (TUNEL, Annexin V, ROS detection) usually used to detect biochemical changes occurring during yeast apoptosis mediated by p53 over expression and the effect of anti-apoptotic purified molecules from Nigel (Nigella sativa) extracts on these same yeasts by the label free technique of FTIR spectroscopy. The comparison of the entire IR spectra highlighted clear modifications between apoptotic p53-expressing yeasts and normal ones. More precisely, DNA damage was detected by the decrease of band intensities at 1079 and 1048 cm-1. While phosphatidylserine exposure was followed by the increase of νsCH2 and νasCH2 bands of unsaturated fatty acids that were exhibited at 2855 and 2926 cm-1, and the appearance of the C = O ester functional group band at 1740 cm-1. In a second step, this FTIR approach was used to estimate the effect of a purified fraction of the Nigel extract. The modulation of band intensities specific to DNA and membrane status was in agreement with apoptosis supression in presence of the Nigel extracts. FTIR spectroscopy is thus proven to be a very reliable technique to monitor the apoptotic cell death in yeast and to be used as a means of evaluating the biomolecules effect on yeast survival.


Asunto(s)
Apoptosis , Extractos Vegetales/farmacología , Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Daño del ADN , Nigella sativa/química , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Proteína p53 Supresora de Tumor/metabolismo
9.
Peptides ; 85: 73-79, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650372

RESUMEN

Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 "QPTKDSSPPLRV" and NO4 "STTSPPAVPHNN" peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity.


Asunto(s)
Neoplasias/genética , Proteínas Oncogénicas/metabolismo , Péptidos/metabolismo , Proteínas de la Matriz Viral/metabolismo , Apoptosis/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/patología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/patogenicidad , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/virología , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Biblioteca de Péptidos , Péptidos/aislamiento & purificación , Péptidos/farmacología , Unión Proteica , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA