RESUMEN
Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10â mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.
RESUMEN
An investigation into the sensitivity of reaction conditions to a highly utilized protocol has been reported, wherein the mono-Boc functionalization of prolinol could be controlled for the exclusive synthesis of either N-Boc, O-Boc, or oxazolidinone derivatives. Mechanistic investigation revealed that the elementary steps could possibly be controlled by (a) a requisite base to recognize the differently acidic sites (NH and OH) for the formation of the conjugate base, which reacts with the electrophile, and (b) the difference in nucleophilicity of the conjugate basic sites. Herein, a successful chemoselective functionalization of the nucleophilic sites of prolinol by employing a suitable base is reported. This has been achieved by exploiting the relative acidity difference of NH and OH along with the reversed nucleophilicity of the corresponding conjugate bases N- and O-. This protocol has also been used for the synthesis of several O-functionalized prolinol derived organocatalysts, few of which have been newly reported.