Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573964

RESUMEN

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Asunto(s)
Ecosistema , Ambiente , Transporte de Electrón , Sulfatos/química , Respiración de la Célula
2.
Int J Syst Evol Microbiol ; 70(4): 2499-2508, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32559826

RESUMEN

An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0-3.3 µm in length and 1.0-1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and Methylomicrobium were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class Gammaproteobacteria and family Methylococcaceae, most closely related to members of the genera Methylomicrobium and Methylobacter (95.0-97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA-DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.


Asunto(s)
Methylococcaceae/clasificación , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Estanques/microbiología , Alberta , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
3.
Comput Struct Biotechnol J ; 21: 1621-1629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860341

RESUMEN

The infants' gut microbiome is dynamic in nature. Literature has shown high inter-individual variability of gut microbial composition in the early years of infancy compared to adulthood. Although next-generation sequencing technologies are rapidly evolving, several statistical analysis aspects need to be addressed to capture the variability and dynamic nature of the infants' gut microbiome. In this study, we proposed a Bayesian Marginal Zero-inflated Negative Binomial (BAMZINB) model, addressing complexities associated with zero-inflation and multivariate structure of the infants' gut microbiome data. Here, we simulated 32 scenarios to compare the performance of BAMZINB with glmFit and BhGLM as the two other widely similar methods in the literature in handling zero-inflation, over-dispersion, and multivariate structure of the infants' gut microbiome. Then, we showed the performance of the BAMZINB approach on a real dataset using SKOT cohort (I and II) studies. Our simulation results showed that the BAMZINB model performed as well as those two methods in estimating the average abundance difference and had a better fit for almost all scenarios when the signal and sample size were large. Applying BAMZINB on SKOT cohorts showed remarkable changes in the average absolute abundance of specific bacteria from 9 to 18 months for infants of healthy and obese mothers. In conclusion, we recommend using the BAMZINB approach for infants' gut microbiome data taking zero-inflation and over-dispersion properties into account in multivariate analysis when comparing the average abundance difference.

4.
Sci Rep ; 10(1): 14295, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868827

RESUMEN

This study aims to act as a methodological guide for contamination monitoring, decontamination, and DNA extraction for peaty and silty permafrost samples with low biomass or difficult to extract DNA. We applied a biological tracer, either only in the field or both in the field and in the lab, via either spraying or painting. Spraying in the field followed by painting in the lab resulted in a uniform layer of the tracer on the core sections. A combination of bleaching, washing, and scraping resulted in complete removal of the tracer leaving sufficient material for DNA extraction, while other widely used decontamination methods did not remove all detectable tracer. In addition, of four widely used commercially available DNA extraction kits, only a modified ZymoBIOMICS DNA Microprep kit was able to acquire PCR amplifiable DNA. Permafrost chemical parameters, age, and soil texture did not have an effect on decontamination efficacy; however, the permafrost type did influence DNA extraction. Based on these findings, we developed recommendations for permafrost researchers to acquire contaminant-free DNA from permafrost with low biomass.


Asunto(s)
ADN/aislamiento & purificación , Sedimentos Geológicos/química , Hielos Perennes/química , Suelo/química , Biomasa , ADN/genética , Descontaminación/métodos , Reacción en Cadena de la Polimerasa , Muestreo , El Yukón
5.
Front Microbiol ; 8: 1845, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033909

RESUMEN

Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of benzene and naphthalene in the surface layer of an oil sands tailings pond were measured. The potential oxidation rates were 4.3 µmol L-1 OSPW d-1 for benzene and 21.4 µmol L-1 OSPW d-1 for naphthalene. To identify benzene and naphthalene-degrading microbial communities, metagenomics was combined with stable isotope probing (SIP), high-throughput sequencing of 16S rRNA gene amplicons, and isolation of microbial strains. SIP using 13C-benzene and 13C-naphthalene detected strains of the genera Methyloversatilis and Zavarzinia as the main benzene degraders, while strains belonging to the family Chromatiaceae and the genus Thauera were the main naphthalene degraders. Metagenomic analysis revealed a diversity of genes encoding oxygenases active against aromatic compounds. Although these genes apparently belonged to many phylogenetically diverse taxa, only a few of these taxa were predominant in the SIP experiments. This suggested that many members of the community are adapted to consuming other aromatic compounds, or are active only under specific conditions. 16S rRNA gene sequence datasets have been submitted to the Sequence Read Archive (SRA) under accession number SRP109130. The Gold Study and Project submission ID number in Joint Genome Institute IMG/M for the metagenome is Gs0047444 and Gp0055765.

6.
ISME J ; 7(5): 908-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23254511

RESUMEN

We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4-8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km(2)) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml(-1) water d(-1). Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via (13)CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy (13)C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Methylococcaceae/metabolismo , Estanques/microbiología , Alberta , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/metabolismo , Metagenoma , Metano/metabolismo , Methylococcaceae/clasificación , Methylococcaceae/genética , Petróleo/microbiología , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA