Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 580(7801): 124-129, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238941

RESUMEN

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Asunto(s)
Relojes Biológicos/fisiología , Desarrollo Embrionario/fisiología , Células Madre Pluripotentes/citología , Somitos/citología , Somitos/crecimiento & desarrollo , Anomalías Múltiples/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos/genética , Desarrollo Embrionario/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Hernia Diafragmática/genética , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Fenotipo , Somitos/metabolismo , Factores de Tiempo
2.
Hum Mol Genet ; 32(10): 1683-1697, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645181

RESUMEN

Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.


Asunto(s)
Encefalopatías , Proteínas de Transporte Vesicular , Animales , Ratas , Proteínas de Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Fusión de Membrana/fisiología , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Neurotransmisores/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Blood ; 141(6): 645-658, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36223592

RESUMEN

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteoma , Animales , Humanos , Pez Cebra , Genética Humana , Mamíferos , Proteínas Adaptadoras Transductoras de Señales
4.
Hum Mol Genet ; 31(21): 3652-3671, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35388883

RESUMEN

Wilson's disease (WD) is a copper metabolic disorder caused by a defective ATP7B function. Conventional therapies cause severe side effects and significant variation in efficacy, according to cohort studies. Thus, exploring new therapeutic approaches to prevent progression to liver failure is urgent. To study the physiology and pathology of WD, immortalized cell lines and rodent WD models have been used conventionally; however, a large gap remains among different species as well as in genetic backgrounds among individuals. We generated induced pluripotent stem cells (iPSCs) from four WD patients carrying compound heterozygous mutations in the ATP7B gene. ATP7B loss- and gain-of-functions were further manifested with ATP7B-deficient iPSCs and heterozygously corrected R778L WD patient-derived iPSCs using CRISPR-Cas9-based gene editing. Although the expression of ATP7B protein varied among WD-specific hepatocytes differentiated from these iPSCs, the expression and secretion of ceruloplasmin (Cp), a downstream copper carrier in plasma, were consistently decreased in WD patient-derived and ATP7B-deficient hepatocytes. A transcriptome analysis detected abnormalities in the retinoid signaling pathway and lipid metabolism in WD-specific hepatocytes. Drug screening using WD patient-derived hepatocytes identified retinoids as promising candidates for rescuing Cp secretion. All-trans retinoic acid also alleviates reactive oxygen species production induced by lipid accumulation in WD-specific hepatocytes treated with oleic acid. These patient-derived iPSC-based hepatic models function as effective platforms for the development of potential therapeutics for hepatic steatosis in WD and other fatty liver diseases.


Asunto(s)
Degeneración Hepatolenticular , Humanos , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Retinoides/metabolismo , Retinoides/uso terapéutico , ATPasas Transportadoras de Cobre/genética , Hepatocitos/metabolismo , Estrés Oxidativo , Mutación
5.
Biochem Biophys Res Commun ; 687: 149211, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37949028

RESUMEN

Reticular dysgenesis (RD) is a rare genetic disease caused by gene mutations in the ATP:AMP phosphotransferase, adenylate kinase 2 (AK2). Patients with RD suffer from severe combined immunodeficiency with neutrophil maturation arrest. Although hematopoietic stem cell transplantation can be a curative option, it is invasive, and complications of agranulocytosis-induced infection worsen the prognosis. Here, we report that the use of UK-5099, an inhibitor of the mitochondrial pyruvate carrier (MPC), on hemo-angiogenic progenitor cells (HAPCs) derived from AK2-deficient induced pluripotent stem cells improved neutrophil maturation. Reactive oxygen species (ROS) levels in AK2-deficient HAPCs remained unchanged throughout all experiments, implying that UK-5099 improved the phenotype without affecting ROS levels. Overall, our results suggest that the MPC is a potential therapeutic target for the treatment of neutrophil maturation defects in RD.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Células Madre Pluripotentes , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Células Madre Pluripotentes/metabolismo , Adenilato Quinasa/metabolismo
6.
Blood ; 137(15): 2021-2032, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512438

RESUMEN

We have recently discovered Japanese children with a novel Fanconi anemia-like inherited bone marrow failure syndrome (IBMFS). This disorder is likely caused by the loss of a catabolic system directed toward endogenous formaldehyde due to biallelic variants in ADH5 combined with a heterozygous ALDH2*2 dominant-negative allele (rs671), which is associated with alcohol-induced Asian flushing. Phytohemagglutinin-stimulated lymphocytes from these patients displayed highly increased numbers of spontaneous sister chromatid exchanges (SCEs), reflecting homologous recombination repair of formaldehyde damage. Here, we report that, in contrast, patient-derived fibroblasts showed normal levels of SCEs, suggesting that different cell types or conditions generate various amounts of formaldehyde. To obtain insights about endogenous formaldehyde production and how defects in ADH5/ALDH2 affect human hematopoiesis, we constructed disease model cell lines, including induced pluripotent stem cells (iPSCs). We found that ADH5 is the primary defense against formaldehyde, and ALDH2 provides a backup. DNA repair capacity in the ADH5/ALDH2-deficient cell lines can be overwhelmed by exogenous low-dose formaldehyde, as indicated by higher levels of DNA damage than in FANCD2-deficient cells. Although ADH5/ALDH2-deficient cell lines were healthy and showed stable growth, disease model iPSCs displayed drastically defective cell expansion when stimulated into hematopoietic differentiation in vitro, displaying increased levels of DNA damage. The expansion defect was partially reversed by treatment with a new small molecule termed C1, which is an agonist of ALDH2, thus identifying a potential therapeutic strategy for the patients. We propose that hematopoiesis or lymphocyte blastogenesis may entail formaldehyde generation that necessitates elimination by ADH5/ALDH2 enzymes.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Anemia de Fanconi/genética , Células Madre Pluripotentes Inducidas/patología , Sistemas CRISPR-Cas , Línea Celular , Células Cultivadas , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Daño del ADN , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/patología , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación
7.
J Allergy Clin Immunol ; 149(1): 176-188.e7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175136

RESUMEN

BACKGROUND: Blau syndrome (BS) is an autoinflammatory disease associated with mutations in nucleotide-binding oligomerization domain 2. Although treatments with anti-TNF agents have been reported to be effective, the underlying molecular mechanisms remain unclear. OBJECTIVE: We aimed to elucidate the mechanisms of autoinflammation in patients with BS and to clarify how anti-TNF treatment controls the disease phenotype at the cellular level in clinical samples. METHODS: Macrophages were differentiated from monocytes of 7 BS patients, and global transcriptional profiles of 5 patients were analyzed with or without IFN-γ stimulation. Macrophages were also generated from BS-specific induced pluripotent stem cells (iPSCs), and their transcriptome was examined for comparison. RESULTS: Aberrant inflammatory responses were observed upon IFN-γ stimulation in macrophages from untreated BS patients, but not in those from patients treated with anti-TNF. iPSC-derived macrophages carrying a disease-associated mutation also showed IFN-γ-dependent accelerated inflammatory responses. Comparisons of peripheral blood- and iPSC-derived macrophages revealed the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) targets in unstimulated macrophages as a common feature. CONCLUSIONS: IFN-γ stimulation is one of the key signals driving aberrant inflammatory responses in BS-associated macrophages. However, long-term treatment with anti-TNF agents ameliorates such abnormalities even in the presence of IFN-γ stimulation. Our data thus suggest that preexposure to TNF or functionally similar cytokines inducing NF-κB-driven proinflammatory signaling during macrophage development is a prerequisite for accelerated inflammatory responses upon IFN-γ stimulation in BS.


Asunto(s)
Artritis/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Sarcoidosis/inmunología , Sinovitis/inmunología , Inhibidores del Factor de Necrosis Tumoral/farmacología , Uveítis/inmunología , Adulto , Artritis/tratamiento farmacológico , Artritis/genética , Línea Celular , Niño , Preescolar , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , FN-kappa B/inmunología , Sarcoidosis/tratamiento farmacológico , Sarcoidosis/genética , Sinovitis/tratamiento farmacológico , Sinovitis/genética , Transcriptoma , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Uveítis/tratamiento farmacológico , Uveítis/genética , Adulto Joven
8.
Pediatr Int ; 64(1): e15390, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36259166

RESUMEN

BACKGROUND: Chediak-Higashi syndrome (CHS) is a congenital disease characterized by immunodeficiency, hemophagocytic lymphohistiocytosis, oculocutaneous albinism, and neurological symptoms. The presence of giant granules in peripheral blood leukocytes is an important hallmark of CHS. Here we prepared induced pluripotent stem cells (iPSCs) from CHS patients (CHS-iPSCs) and differentiated them into hematopoietic cells to model the disease phenotypes. METHODS: Fibroblasts were obtained from two CHS patients and then reprogrammed into iPSCs. The iPSCs were differentiated into myeloid cells; the size of the cytosolic granules was quantified by May-Grunwald Giemsa staining and myeloperoxidase staining. RESULTS: Two clones of iPSCs were established from each patient. The differentiation efficiency to CD33+ CD45+ myeloid cells was not significantly different in CHS-iPSCs compared with control iPSCs, but significantly larger granules were observed. CONCLUSIONS: We succeeded in reproducing a characteristic cellular phenotype, giant granules in myeloid cells, using CHS-iPSCs, demonstrating that iPSCs can be used to model the pathogenesis of CHS patients.


Asunto(s)
Síndrome de Chediak-Higashi , Células Madre Pluripotentes Inducidas , Linfohistiocitosis Hemofagocítica , Humanos , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/patología , Células Madre Pluripotentes Inducidas/patología , Linfohistiocitosis Hemofagocítica/diagnóstico
9.
Pathol Int ; 71(12): 803-813, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34587661

RESUMEN

Diamond-Blackfan anemia (DBA) is a genetic disorder caused by mutations in genes encoding ribosomal proteins and characterized by erythroid aplasia and various physical abnormalities. Although accumulating evidence suggests that defective ribosome biogenesis leads to p53-mediated apoptosis in erythroid progenitor cells, little is known regarding the underlying causes of the physical abnormalities. In this study, we established induced pluripotent stem cells from a DBA patient with RPL5 haploinsufficiency. These cells retained the ability to differentiate into osteoblasts and chondrocytes. However, RPL5 haploinsufficiency impaired the production of mucins and increased apoptosis in differentiated chondrocytes. Increased expression of the pro-apoptotic genes BAX and CASP9 further indicated that RPL5 haploinsufficiency triggered p53-mediated apoptosis in chondrocytes. Murine double minute 2 (MDM2), the primary negative regulator of p53, plays a crucial role in erythroid aplasia in DBA patient. We found the phosphorylation level of MDM2 was significantly decreased in RPL5 haploinsufficient chondrocytes. In stark contrast, we found no evidence that RPL5 haploinsufficiency impaired osteogenesis. Collectively, our data support a model in which RPL5 haploinsufficiency specifically induces p53-mediated apoptosis in chondrocytes through MDM2 inhibition, which leads to physical abnormalities in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Haploinsuficiencia , Proteínas Ribosómicas/genética , Animales , Apoptosis/genética , Niño , Condrocitos/patología , Marcadores Genéticos , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Osteogénesis/genética
10.
Ann Rheum Dis ; 79(11): 1492-1499, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32647028

RESUMEN

OBJECTIVES: To collect clinical information and NOD2 mutation data on patients with Blau syndrome and to evaluate their prognosis. METHODS: Fifty patients with NOD2 mutations were analysed. The activity of each NOD2 mutant was evaluated in HEK293 cells by reporter assay. Clinical information was collected from medical records through the attending physicians. RESULTS: The study population comprised 26 males and 24 females aged 0-61 years. Thirty-two cases were sporadic, and 18 were familial from 9 unrelated families. Fifteen different mutations in NOD2 were identified, including 2 novel mutations (p.W490S and D512V); all showed spontaneous nuclear factor kappa B activation, and the most common mutation was p.R334W. Twenty-six patients had fever at relatively early timepoints in the disease course. Forty-three of 47 patients had a skin rash. The onset of disease in 9 patients was recognised after BCG vaccination. Forty-five of 49 patients had joint lesions. Thirty-eight of 50 patients had ocular symptoms, 7 of which resulted in blindness. After the diagnosis of Blau syndrome, 26 patients were treated with biologics; all were antitumour necrosis factor agents. Only 3 patients were treated with biologics alone; the others received a biologic in combination with methotrexate and/or prednisolone. None of the patients who became blind received biologic treatment. CONCLUSIONS: In patients with Blau syndrome, severe joint contractures and blindness may occur if diagnosis and appropriate treatment are delayed. Early treatment with a biologic agent may improve the prognosis.


Asunto(s)
Artritis/tratamiento farmacológico , Artritis/genética , Artritis/patología , Proteína Adaptadora de Señalización NOD2/genética , Sarcoidosis/tratamiento farmacológico , Sarcoidosis/genética , Sarcoidosis/patología , Sinovitis/tratamiento farmacológico , Sinovitis/genética , Sinovitis/patología , Uveítis/tratamiento farmacológico , Uveítis/genética , Uveítis/patología , Adolescente , Adulto , Edad de Inicio , Antirreumáticos/uso terapéutico , Ceguera/epidemiología , Ceguera/etiología , Niño , Preescolar , Femenino , Humanos , Lactante , Japón , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Mutación , Adulto Joven
11.
Biomed Microdevices ; 22(2): 34, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32377802

RESUMEN

A fundamental limitation in the derivation of hematopoietic stem and progenitor cells is the imprecise understanding of human developmental hematopoiesis. Herein we established a multilayer microfluidic Aorta-Gonad-Mesonephros (AGM)-on-a-chip to emulate developmental hematopoiesis from pluripotent stem cells. The device consists of two layers of microchannels separated by a semipermeable membrane, which allows the co-culture of human hemogenic endothelial (HE) cells and stromal cells in a physiological relevant spatial arrangement to replicate the structure of the AGM. HE cells derived from human induced pluripotent stem cells (hiPSCs) were cultured on a layer of mesenchymal stromal cells in the top channel while vascular endothelial cells were co-cultured on the bottom side of the membrane within the microfluidic device. We show that this AGM-on-a-chip efficiently derives endothelial-to-hematopoietic transition (EHT) from hiPSCs compared with regular suspension culture. The presence of mesenchymal stroma and endothelial cells renders functional HPCs in vitro. We propose that the AGM-on-a-chip could serve as a platform to dissect the cellular and molecular mechanisms of human developmental hematopoiesis.


Asunto(s)
Aorta/citología , Biomimética/instrumentación , Gónadas/citología , Hematopoyesis , Dispositivos Laboratorio en un Chip , Mesonefro/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología
12.
Biochem Biophys Res Commun ; 515(1): 1-8, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30948156

RESUMEN

Natural killer (NK) cells are innate lymphocytes and show cytotoxicity against tumor cells without prior antigen specific stimulation. Because of their innate properties, NK cells are being considered for immunotherapies against various malignancies or leukemia. Human pluripotent stem cells (hPSCs) are capable of inducing enough NK cells for allogeneic transplantation. However, current induction protocols require feeder cells or human or bovine serum for the differentiation and expansion of NK cells, which incurs potential risk for contamination and may cause lot dependency in the cells. To address these issues, here we established a differentiation protocol for developing functional NK cells from hPSCs under a completely chemically-defined condition. The resultant PSC-derived NK cells show comparable phenotypes to those produced under serum-containing condition, exerting strong killing potential against a leukemia cell line in vitro and resistance to tumor growth in vivo. Our protocol can be a useful tool for applying PSC-derived NK cells to future cellular cancer immunotherapies.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucemia/inmunología , Leucemia/terapia , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Células K562 , Células Asesinas Naturales/citología , Células Asesinas Naturales/trasplante , Leucemia/patología , Ratones , Suero
13.
J Hum Genet ; 64(5): 445-458, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30846821

RESUMEN

Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect. This mutation is considered the cause of an impaired response to DNA replication stress, the main function of ATR, contributing to the pathogenesis of microcephaly. However, the precise behavior and impact of this splicing defect in human neural progenitor cells (NPCs) is unclear. To address this, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone. SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs with negative enrichment of neuronal genesis-related gene sets. In SS-NPCs, abnormal mitotic spindles occurred more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that TG003, a CLK1 inhibitor, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Treatment with TG003 restored the ATR kinase activity in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model revealed a novel effect of the ATR mutation in mitotic processes of NPCs and NPC-specific missplicing, accompanied by the recovery of neuronal defects using a splicing rectifier.


Asunto(s)
Empalme Alternativo , Proteínas de la Ataxia Telangiectasia Mutada , Enanismo , Facies , Células Madre Pluripotentes Inducidas , Microcefalia , Modelos Biológicos , Mutación , Proteínas de la Ataxia Telangiectasia Mutada/biosíntesis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular , Enanismo/enzimología , Enanismo/genética , Enanismo/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Masculino , Microcefalia/enzimología , Microcefalia/genética , Microcefalia/patología
14.
J Allergy Clin Immunol ; 141(1): 339-349.e11, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587749

RESUMEN

BACKGROUND: Blau syndrome, or early-onset sarcoidosis, is a juvenile-onset systemic granulomatosis associated with a mutation in nucleotide-binding oligomerization domain 2 (NOD2). The underlying mechanisms of Blau syndrome leading to autoinflammation are still unclear, and there is currently no effective specific treatment for Blau syndrome. OBJECTIVES: To elucidate the mechanisms of autoinflammation in patients with Blau syndrome, we sought to clarify the relation between disease-associated mutant NOD2 and the inflammatory response in human samples. METHODS: Blau syndrome-specific induced pluripotent stem cell (iPSC) lines were established. The disease-associated NOD2 mutation of iPSCs was corrected by using a CRISPR-Cas9 system to precisely evaluate the in vitro phenotype of iPSC-derived cells. We also introduced the same NOD2 mutation into a control iPSC line. These isogenic iPSCs were then differentiated into monocytic cell lineages, and the statuses of nuclear factor κB pathway and proinflammatory cytokine secretion were investigated. RESULTS: IFN-γ acted as a priming signal through upregulation of NOD2. In iPSC-derived macrophages with mutant NOD2, IFN-γ treatment induced ligand-independent nuclear factor κB activation and proinflammatory cytokine production. RNA sequencing analysis revealed distinct transcriptional profiles of mutant macrophages both before and after IFN-γ treatment. Patient-derived macrophages demonstrated a similar IFN-γ-dependent inflammatory response. CONCLUSIONS: Our data support the significance of ligand-independent autoinflammation in the pathophysiology of Blau syndrome. Our comprehensive isogenic disease-specific iPSC panel provides a useful platform for probing therapeutic and diagnostic clues for the treatment of patients with Blau syndrome.


Asunto(s)
Artritis/etiología , Artritis/metabolismo , Interferón gamma/metabolismo , Macrófagos/metabolismo , Células Madre Pluripotentes/metabolismo , Sinovitis/etiología , Sinovitis/metabolismo , Uveítis/etiología , Uveítis/metabolismo , Linaje de la Célula/genética , Citocinas/metabolismo , Análisis Mutacional de ADN , Exones , Marcación de Gen , Sitios Genéticos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mediadores de Inflamación/metabolismo , Interferón gamma/genética , Ligandos , Macrófagos/inmunología , Masculino , Mutación , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Fenotipo , Células Madre Pluripotentes/citología , Sarcoidosis
15.
Biochem Biophys Res Commun ; 497(2): 719-725, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29462620

RESUMEN

AK2 is an adenylate phosphotransferase that localizes at the intermembrane spaces of the mitochondria, and its mutations cause a severe combined immunodeficiency with neutrophil maturation arrest named reticular dysgenesis (RD). Although the dysfunction of hematopoietic stem cells (HSCs) has been implicated, earlier developmental events that affect the fate of HSCs and/or hematopoietic progenitors have not been reported. Here, we used RD-patient-derived induced pluripotent stem cells (iPSCs) as a model of AK2-deficient human cells. Hematopoietic differentiation from RD-iPSCs was profoundly impaired. RD-iPSC-derived hemoangiogenic progenitor cells (HAPCs) showed decreased ATP distribution in the nucleus and altered global transcriptional profiles. Thus, AK2 has a stage-specific role in maintaining the ATP supply to the nucleus during hematopoietic differentiation, which affects the transcriptional profiles necessary for controlling the fate of multipotential HAPCs. Our data suggest that maintaining the appropriate energy level of each organelle by the intracellular redistribution of ATP is important for controlling the fate of progenitor cells.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/patología , Células Madre Pluripotentes Inducidas/patología , Leucopenia/patología , Inmunodeficiencia Combinada Grave/patología , Adenilato Quinasa/genética , Células Cultivadas , Metabolismo Energético , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Leucopenia/genética , Leucopenia/metabolismo , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Regulación hacia Arriba
16.
Inflamm Res ; 67(10): 879-889, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30136196

RESUMEN

OBJECTIVE: IL-1ß secretion by the inflammasome is strictly controlled and requires two sequential signals: a priming signal and an activating signal. Lysosomal membrane permeabilization (LMP) plays a critical role in the regulation of NLRP3 inflammasome, and generally acts as an activating signal. However, the role of LMP controlling NLRP3 inflammasome activation in human vascular smooth muscle cells (hVSMCs) is not well defined. METHODS: LMP was induced in hVSMCs by Leu-Leu-O-methyl ester. Cathepsin B was inhibited by CA-074 Me. Cytokine release, mRNA, and protein were quantified by enzyme-linked immunosorbent assay, quantitative PCR, and Western blot, respectively. NF-κB activity was analyzed by immunostaining of the NF-κB p65 nuclear translocation and using the dual-luciferase reporter assay system. RESULTS: LMP had both priming and activating roles, causing an upregulation of proIL-1ß and NLRP3 and the secretion of mature IL-1ß from unprimed hVSMCs. LMP activated the canonical NF-κB pathway. The priming effect of LMP was inhibited by CA-074 Me, indicating an upstream role of cathepsin B. CONCLUSIONS: These data support a novel role of LMP as a single stimulus for the secretion of IL-1ß from hVSMCs, implying the possibility that hVSMCs are an important initiator of the sterile inflammatory response caused by lysosomal disintegration.


Asunto(s)
Citocinas/metabolismo , Lisosomas/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Citocinas/genética , Humanos , Inflamasomas/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
J Hum Genet ; 61(6): 565-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26841829

RESUMEN

Dravet syndrome (DS) is a severe childhood epilepsy typically caused by de novo dominant mutations in SCN1A. Although patients with DS frequently have neurocognitive abnormalities, the precise neural mechanisms responsible for their expression have not been elucidated. There are wide phenotypic differences among individuals with SCN1A mutations, suggesting that factors other than the SCN1A mutation modify the phenotype. Therefore, a well-controlled cellular model system is required to improve our understanding of the mechanisms underlying DS. Here we generated induced pluripotent stem cell (iPSC) lines from an individual with SCN1A mutation mosaicism, and separately cloned iPSC lines both with and without the SCN1A mutation. These clones theoretically have the same genetic backgrounds, except for the SCN1A gene, and should serve as an ideal pair for investigating the pathophysiology caused by SCN1A mutations. Quantitative reverse transcription-PCR and western blot analysis revealed higher tyrosine hydroxylase mRNA and protein expression levels in mutant neurons than in wild-type neurons. Moreover, dopamine concentrations in media collected from mutant neural cultures were higher than those from wild-type neural cultures. Our findings suggest that SCN1A mutation leads to changes in the dopamine system that may contribute to the behavioral abnormalities in DS.


Asunto(s)
Disfunción Cognitiva/genética , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/genética , Estudios de Asociación Genética , Células Madre Pluripotentes Inducidas/metabolismo , Mosaicismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Diferenciación Celular , Análisis Mutacional de ADN , Dopamina/metabolismo , Epilepsias Mioclónicas/metabolismo , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Cariotipo , Masculino , Neuronas/citología , Neuronas/metabolismo , Linaje , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
19.
Epilepsia ; 57(4): e81-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26918652

RESUMEN

Syntaxin-binding protein 1 (STXBP1) is essential for synaptic vesicle exocytosis. Mutations of its encoding gene, STXBP1, are among the most frequent genetic causes of epileptic encephalopathies. However, the precise pathophysiology of STXBP1 haploinsufficiency has not been elucidated. Using patient-derived induced pluripotent stem cells (iPSCs), we aimed to establish a neuronal model for STXBP1 haploinsufficiency and determine the pathophysiologic basis for STXBP1 encephalopathy. We generated iPSC lines from a patient with Ohtahara syndrome (OS) harboring a heterozygous nonsense mutation of STXBP1 (c.1099C>T; p.R367X) and performed neuronal differentiation. Both STXBP1 messenger RNA (mRNA) and STXBP1 protein expression levels of OS-derived neurons were approximately 50% lower than that of control-derived neurons, suggesting that OS-derived neurons are a suitable model for elucidating the pathophysiology of STXBP1 haploinsufficiency. Through Western blot and immunocytochemistry assays, we found that OS-derived neurons show reduced levels and mislocalization of syntaxin-1, a component of soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. In addition, OS-derived neurons have impaired neurite outgrowth. In conclusion, this model enables us to investigate the neurobiology of STXBP1 encephalopathy throughout the stages of neurodevelopment. Reduced expression of STXBP1 leads to changes in the expression and localization of syntaxin-1 that may contribute to the devastating phenotype of STXBP1 encephalopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Munc18/metabolismo , Neuritas/fisiología , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/metabolismo , Sintaxina 1/metabolismo , Células Cultivadas , Preescolar , Humanos , Lactante , Masculino
20.
Ann Rheum Dis ; 74(3): 603-10, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24326009

RESUMEN

UNLABELLED: : Familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome are dominantly inherited autoinflammatory diseases associated to gain-of-function NLRP3 mutations and included in the cryopyrin-associated periodic syndromes (CAPS). A variable degree of somatic NLRP3 mosaicism has been detected in ≈35% of patients with CINCA. However, no data are currently available regarding the relevance of this mechanism in other CAPS phenotypes. OBJECTIVE: To evaluate somatic NLRP3 mosaicism as the disease-causing mechanism in patients with clinical CAPS phenotypes other than CINCA and NLRP3 mutation-negative. METHODS: NLRP3 analyses were performed by Sanger sequencing and by massively parallel sequencing. Apoptosis-associated Speck-like protein containing a CARD (ASC)-dependent nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) activation and transfection-induced THP-1 cell death assays determined the functional consequences of the detected variants. RESULTS: A variable degree (5.5-34.9%) of somatic NLRP3 mosaicism was detected in 12.5% of enrolled patients, all of them with a MWS phenotype. Six different missense variants, three novel (p.D303A, p.K355T and p.L411F), were identified. Bioinformatics and functional analyses confirmed that they were disease-causing, gain-of-function NLRP3 mutations. All patients treated with anti-interleukin1 drugs showed long-lasting positive responses. CONCLUSIONS: We herein show somatic NLRP3 mosaicism underlying MWS, probably representing a shared genetic mechanism in CAPS not restricted to CINCA syndrome. The data here described allowed definitive diagnoses of these patients, which had serious implications for gaining access to anti-interleukin 1 treatments under legal indication and for genetic counselling. The detection of somatic mosaicism is difficult when using conventional methods. Potential candidates should benefit from the use of modern genetic tools.


Asunto(s)
Proteínas Portadoras/genética , Síndromes Periódicos Asociados a Criopirina/genética , Mosaicismo , Adolescente , Pueblo Asiatico/genética , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Proteína con Dominio Pirina 3 de la Familia NLR , Análisis de Secuencia de ADN , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA