Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833594

RESUMEN

Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. NLR-REQUIRED FOR CELL DEATH (NRCs) are phylogenetically related nodes that function downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. Here, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in four divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.

2.
Plant Cell ; 36(7): 2491-2511, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38598645

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.


Asunto(s)
Marchantia , Proteínas NLR , Nicotiana , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/inmunología , Marchantia/metabolismo , Dominios Proteicos , Filogenia , Inmunidad de la Planta/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell ; 35(10): 3662-3685, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37467141

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Filogenia , Dominios Proteicos , Plantas/metabolismo , Inmunidad de la Planta/genética , Proteínas Portadoras/metabolismo
4.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656829

RESUMEN

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Inmunidad de la Planta/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
5.
Cancer Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039802

RESUMEN

Lazertinib, a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), demonstrates marked efficacy in EGFR-mutant lung cancer. However, resistance commonly develops, prompting consideration of therapeutic strategies to overcome initial drug resistance mechanisms. This study aimed to elucidate the adaptive resistance to lazertinib and advocate novel combination treatments that demonstrate efficacy in preventing resistance as a first-line treatment for EGFR mutation-positive NSCLC. We found that AXL knockdown significantly inhibited lung cancer cell viability in the presence of lazertinib, indicating that AXL activation contributes to lazertinib resistance. However, long-term culture with a combination of lazertinib and AXL inhibitors led to residual cell proliferation and increased the MCL-1 expression level, which was mediated by the nuclear translocation of the transcription factor YAP. Triple therapy with an MCL-1 or YAP inhibitor in combination with lazertinib and an AXL inhibitor significantly reduced cell viability and increased the apoptosis rate. These results demonstrate that AXL and YAP/MCL-1 signals contribute to adaptive lazertinib resistance in EGFR-mutant lung cancer cells, suggesting that the initial dual inhibition of AXL and YAP/MCL-1 might be a highly effective strategy in eliminating lazertinib-resistant cells.

6.
Br J Cancer ; 131(2): 361-371, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822146

RESUMEN

BACKGROUND: Recent therapeutic strategies for KRAS-mutated cancers that inhibit the MAPK pathway have attracted considerable attention. The RAF/MEK clamp avutometinib (VS-6766/CH5126766/RO5126766/CKI27) is promising for patients with KRAS-mutated cancers. Although avutometinib monotherapy has shown clinical activity in patients with KRAS-mutated cancers, effective combination strategies will be important to develop. METHODS: Using a phosphorylation kinase array kit, we explored the feedback mechanism of avutometinib in KRAS-mutated NSCLC cells, and investigated the efficacy of combining avutometinib with inhibitors of the feedback signal using in vitro and in vivo experiments. Moreover, we searched for a biomarker for the efficacy of combination therapy through an in vitro study and analysis using the The Cancer Genome Atlas Programme dataset. RESULTS: Focal adhesion kinase (FAK) phosphorylation/activation was increased after avutometinib treatment and synergy between avutometinib and FAK inhibitor, defactinib, was observed in KRAS-mutated NSCLC cells with an epithelial rather than mesenchymal phenotype. Combination therapy with avutometinib and defactinib induced apoptosis with upregulation of Bim in cancer cells with an epithelial phenotype in an in vitro and in vivo study. CONCLUSIONS: These results demonstrate that the epithelial-mesenchymal transition status may be a promising biomarker for the efficacy of combination therapy with avutometinib and defactinib in KRAS-mutated NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Ratones , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Fosforilación , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Femenino , Benzamidas , Pirazinas , Sulfonamidas
7.
PLoS Biol ; 19(10): e3001124, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669691

RESUMEN

Reference datasets are critical in computational biology. They help define canonical biological features and are essential for benchmarking studies. Here, we describe a comprehensive reference dataset of experimentally validated plant nucleotide-binding leucine-rich repeat (NLR) immune receptors. RefPlantNLR consists of 481 NLRs from 31 genera belonging to 11 orders of flowering plants. This reference dataset has several applications. We used RefPlantNLR to determine the canonical features of functionally validated plant NLRs and to benchmark 5 NLR annotation tools. This revealed that although NLR annotation tools tend to retrieve the majority of NLRs, they frequently produce domain architectures that are inconsistent with the RefPlantNLR annotation. Guided by this analysis, we developed a new pipeline, NLRtracker, which extracts and annotates NLRs from protein or transcript files based on the core features found in the RefPlantNLR dataset. The RefPlantNLR dataset should also prove useful for guiding comparative analyses of NLRs across the wide spectrum of plant diversity and identifying understudied taxa. We hope that the RefPlantNLR resource will contribute to moving the field beyond a uniform view of NLR structure and function.


Asunto(s)
Bases de Datos de Proteínas , Resistencia a la Enfermedad/inmunología , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Anotación de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Dominios Proteicos , Reproducibilidad de los Resultados
8.
Bioorg Med Chem ; 100: 117632, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340642

RESUMEN

Small molecule-based selective cancer cell-targeting can be a desirable anticancer therapeutic strategy. Aiming to discover such small molecules, we previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) that selectively release anticancer agents in cancer cells where lysine-specific demethylase 1 (LSD1) is overexpressed. In this work, we designed PCPA-entinostat conjugates for selective cancer cell targeting. PCPA-entinostat conjugate 12 with a 4-oxybenzyl group linker released entinostat in the presence of LSD1 in in vitro assays and selectively inhibited the growth of cancer cells in preference to normal cells, suggesting the potential of PCPA-entinostat conjugates as novel anticancer drug delivery small molecules.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Benzamidas , Histona Demetilasas , Neoplasias/tratamiento farmacológico , Piridinas , Ciclopropanos/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-38693071

RESUMEN

OBJECTIVE: We devised a split-bolus injection and imaging protocol for pulmonary artery and vein separation computed tomography (CT) angiography based on time enhancement curve characterization. Furthermore, we aimed to evaluate the contrast enhancement effect and success rate of blood vessel separation between the pulmonary artery and vein of this proposed protocol. METHODS: In this study, 102 patients (45 patients with the standard protocol and 57 patients with the proposed protocol) who underwent pulmonary arteriovenous computed tomography angiography were included. The CT values of various vessels, CT value difference between the pulmonary trunk and left atrium, and coefficient of variation in pulmonary arteries and veins were obtained from images of the standard and proposed protocols. RESULTS: The CT values in the proposed protocol for the pulmonary trunk were significantly higher than those in the standard protocol (487.3 [415.5-546.9] HU vs. 293.0 [259.0-350.0] HU, P < 0.01). The CT value difference between the pulmonary trunk and left atrium in the proposed protocol was significantly higher than that in the conventional protocol (211.3 [158.0-265.7] HU vs. 32 [-30.0-55.0] HU, P < 0.01). The coefficient of variation in the proposed protocol was 0.08 (0.06-0.10) and 0.09 (0.08-0.11) in pulmonary arteries and 0.08 (0.06-0.09) and 0.09 (0.07-0.12) in pulmonary veins, respectively. CONCLUSIONS: The proposed protocol achieved separation between the pulmonary artery and vein in many patients, making it useful for the preoperative assessment of individual thoracic anatomy.

10.
Pediatr Int ; 66(1): e15773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863279

RESUMEN

BACKGROUND: Lupus anticoagulant-hypoprothrombinemia syndrome (LAHPS) is a rare disease caused by acquired factor II (FII) deficiency and lupus anticoagulant. Patients with LAHPS typically present with thrombosis and bleeding. However, little information is available on the evaluation of coagulation potential in patients with LAHPS. We examined global coagulation potentials in patients with LAHPS during the clinical course in this study. METHODS: Coagulation potentials in two pediatric patients with LAHPS were assessed by measuring clotting time (CT) and clot formation time using Ca2+-triggered rotational thromboelastometry (ROTEM), CT and maximum coagulation velocity using clot waveform analysis (CWA), and lag time and peak thrombin using the thrombin generation assay (TGA). The day of admission was defined as day 0. RESULTS: In case 1, the bleeding symptoms disappeared by day 5. However, the TGA and CWA results were markedly lower than normal, although FII activity (FII:C) returned to within the normal range by day 14. In contrast, ROTEM revealed a recovery to near-normal levels (day 14). All coagulation parameters (day 80) were within normal ranges. In case 2, coagulation potential was severely depressed until day 12, although FII:C returned to normal levels. Bleeding symptoms disappeared on day 19, and the ROTEM data revealed that the parameters were close to the normal range. The coagulation parameters in all assays were normalized on day 75. CONCLUSIONS: Recovery of coagulation potential in patients with LAHPS was slower than the recovery of FII:C. Moreover, ROTEM appeared to be clinically useful for assessing coagulation potential in patients with LAHPS.


Asunto(s)
Hipoprotrombinemias , Inhibidor de Coagulación del Lupus , Tromboelastografía , Humanos , Hipoprotrombinemias/sangre , Hipoprotrombinemias/diagnóstico , Inhibidor de Coagulación del Lupus/sangre , Femenino , Tromboelastografía/métodos , Masculino , Niño , Pruebas de Coagulación Sanguínea/métodos , Coagulación Sanguínea/fisiología , Preescolar , Síndrome Antifosfolípido/sangre , Síndrome Antifosfolípido/complicaciones , Síndrome Antifosfolípido/diagnóstico
11.
Plant Physiol ; 188(1): 70-80, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633454

RESUMEN

Nicotiana benthamiana has emerged as a complementary experimental system to Arabidopsis thaliana. It enables fast-forward in vivo analyses primarily through transient gene expression and is particularly popular in the study of plant immunity. Recently, our understanding of nucleotide-binding leucine-rich repeat (NLR) plant immune receptors has greatly advanced following the discovery of the Arabidopsis HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome. Here, we describe a vector system of 72 plasmids that enables functional studies of the ZAR1 resistosome in N. benthamiana. We showed that ZAR1 stands out among the coiled coil class of NLRs (CC-NLRs) for being highly conserved across distantly related dicot plant species and confirmed NbZAR1 as the N. benthamiana ortholog of Arabidopsis ZAR1. Effector-activated and autoactive NbZAR1 triggers the cell death response in N. benthamiana and this activity is dependent on a functional N-terminal α1 helix. C-terminally tagged NbZAR1 remains functional in N. benthamiana, thus enabling cell biology and biochemical studies in this plant system. We conclude that the NbZAR1 open source pZA plasmid collection forms an additional experimental system to Arabidopsis for in planta resistosome studies.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Resistencia a la Enfermedad/genética , Nicotiana/genética , Nicotiana/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Nicotiana/microbiología
12.
Org Biomol Chem ; 21(29): 5977-5984, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37434538

RESUMEN

While γ-glutamylcyclotransferase (GGCT) has been implicated in cancer-cell proliferation, the role of GGCT enzymatic activity in the regulation of cancer-cell growth remains unclear. Toward further understanding of GGCT in vivo, here we report a novel cell-permeable chemiluminogenic probe "MAM-LISA-103" that detects intracellular GGCT activity and apply it to in vivo imaging. We first developed a chemiluminogenic probe LISA-103, which simply and sensitively detects the enzymatic activity of recombinant GGCT through chemiluminescence. We then designed the cell-permeable GGCT probe MAM-LISA-103 and applied it to several biological experiments. MAM-LISA-103 successfully detected the intracellular GGCT activity in GGCT-overexpressing NIH-3T3 cells. Moreover, MAM-LISA-103 demonstrated tumor-imaging ability when administered to a xenograft model using immunocompromised mice inoculated with MCF7 cells.


Asunto(s)
gamma-Glutamilciclotransferasa , Animales , Humanos , Ratones , gamma-Glutamilciclotransferasa/química , Células MCF-7 , Colorantes Fluorescentes/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-37743524

RESUMEN

BACKGROUND: Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS: We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS: Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS: RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.


Asunto(s)
Antioxidantes , Neoplasias , Animales , Ratas , Humanos , Carcinogénesis , Apoptosis , Azoximetano/toxicidad
14.
Biochem Biophys Res Commun ; 590: 55-62, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34971958

RESUMEN

Cellular senescence is a state of irreversible cell growth arrest that functions as a biological defense mechanism against severe DNA damage. Senescent cells with DNA damage produce pro-inflammatory cytokines, such as IL-6 and IL-8, and this phenomenon is called the senescence-associated secretory phenotype (SASP). SASP factors have been implicated in various disorders, including cancer. We performed a screening assay and identified oridonin as a candidate SASP inhibitor. Oridonin is an active diterpenoid that is isolated from Isodon plants and has been reported to exhibit anti-inflammatory, antibacterial, antioxidant, and antitumor activities. It reduced the secretion of IL-6 and IL-8 in senescent cells at the protein and mRNA levels. Oridonin also inhibited p65 subunit of NF-κB activity. However, oridonin did not affect SA ß-gal activity and enhanced the expression of p21. The expression and phosphorylation of p38 were down-regulated by oridonin. The p38 inhibitor SB203580 inhibited the secretion of IL-8, slightly inhibited the secretion of IL-6, and did not affect NF-κB activity. Therefore, the NF-κB and p38 pathways may contribute to the inhibition of SASP by oridonin. Oridonin has potential as a therapeutic agent for SASP-related diseases.


Asunto(s)
Senescencia Celular , Diterpenos de Tipo Kaurano/farmacología , FN-kappa B/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Bleomicina , Línea Celular , Senescencia Celular/efectos de los fármacos , Humanos , Fenotipo Secretor Asociado a la Senescencia/efectos de los fármacos
15.
Biochem Biophys Res Commun ; 628: 110-115, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084548

RESUMEN

Colorectal cancer is a significant cause of morbidity and represents a serious public health issue in many countries. The development of a breakthrough preventive method for colorectal cancer is urgently needed. Aspirin has recently been attracting attention as a cancer preventive drug, and its inhibitory effects on the development of various cancers have been reported in several large prospective studies. However, the underlying molecular mechanisms have not yet been elucidated in detail. In the present study, we attempted to identify the target proteins of aspirin using a chemical biology technique with salicylic acid, the main metabolite of aspirin. We generated salicylic acid-presenting FG beads and purified salicylic acid-binding proteins from human colorectal cancer HT-29 cells. The results obtained showed the potential of ribosomal protein S3 (RPS3) as one of the target proteins of salicylic acid. The depletion of RPS3 by siRNA reduced CDK4 expression and induced G1 phase arrest in human colorectal cancer cells. These results were consistent with the effects induced by the treatment with sodium salicylate, suggesting that salicylic acid negatively regulates the function of RPS3. Collectively, the present results show the potential of RPS3 as a novel target for salicylic acid in the protective effects of aspirin against colorectal cancer, thereby supporting RPS3 as a target molecule for cancer prevention.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ribosómicas , Ácido Salicílico , Aspirina/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasa 4 Dependiente de la Ciclina/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Estudios Prospectivos , ARN Interferente Pequeño , Proteínas Ribosómicas/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Ácido Salicílico/farmacología , Salicilato de Sodio
16.
Pediatr Int ; 64(1): e15159, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35727889

RESUMEN

BACKGROUND: Patients with high-risk neuroblastoma have a poor prognosis; new therapeutic agents are therefore required. We investigated the antitumor effects of OBP-801, a novel histone deacetylase inhibitor, its underlying mechanism, and its potential as a therapeutic agent for patients with neuroblastoma. METHODS: The study included five human neuroblastoma cell lines: IMR32, GOTO, KP-N-RTBM, SK-N-AS, and SH-SY5Y. We investigated cell proliferation, cell cycle status, protein expression patterns, and apoptosis in neuroblastoma cells after OBP-801 treatment in vitro. Cell survival rate and cell cycle were analyzed using the WST-8 assay and flow cytometry, respectively. Apoptosis was detected using annexin V staining, and the expression of apoptosis-related proteins was investigated by western blotting. The antitumor activity of OBP-801 was examined in an in vivo xenograft mouse model. RESULTS: Dose-effect curve analysis showed that the mean half-maximal inhibitory concentration value was 5.5 ± 5.9 nM for the MYCN-amplified cell lines (IMR32, GOTO, and KP-N-RTBM) and 3.1 ± 0.7 nM for the MYCN-nonamplified cell lines (SK-N-AS and SH-SY5Y). OBP-801 inhibited cell proliferation and growth in all the cell lines. It induced G2/M phase arrest through the p21 (CDKN1A) pathway, increasing histone H3 levels and, subsequently, apoptosis in human neuroblastoma cells. OBP-801 suppressed the growth of neuroblastoma cells in the mouse xenograft model. CONCLUSIONS: Overall, OBP-801 induces M-phase arrest and apoptosis in neuroblastoma cells via mitotic catastrophe. Our results indicate that OBP-801 is a promising therapeutic agent with fewer adverse effects for patients with neuroblastoma.


Asunto(s)
Neuroblastoma , Animales , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ratones , Proteína Proto-Oncogénica N-Myc/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico
17.
J Labelled Comp Radiopharm ; 65(5): 140-146, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122288

RESUMEN

We have developed 8-amino-3-(2S,5R-dimethyl-1-piperidyl)-[1,2,4]triazolo[4,3-a]pyrazine-5-[11 C]carbonitrile ([11 C]MTP38) as a positron emission tomography (PET) tracer for the imaging of phosphodiesterase 7. For the fully automated production of [11 C]MTP38 routinely and efficiently for clinical applications, we determined the radiosynthesis procedure of [11 C]MTP38 using [11 C]hydrogen cyanide ([11 C]HCN) as a PET radiopharmaceutical. Radiosynthesis of [11 C]MTP38 was performed using an automated 11 C-labeling synthesizer developed in-house within 40 min after the end of irradiation. [11 C]MTP38 was obtained with a relatively high radiochemical yield (33 ± 5.5% based on [11 C]CO2 at the end of irradiation, decay-corrected, n = 15), radiochemical purity (>97%, n = 15), and molar activity (47 ± 12 GBq/µmol at the end of synthesis, n = 15). All the results of the quality control (QC) testing for the [11 C]MTP38 injection complied with our in-house QC and quality assurance specifications. We successfully automated the radiosynthesis of [11 C]MTP38 for clinical applications using an 11 C-labeling synthesizer and sterile isolator. Taken together, this protocol provides a new radiopharmaceutical [11 C]MTP38 suitable for clinical applications.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7 , Radiofármacos , Cianuro de Hidrógeno , Tomografía de Emisión de Positrones/métodos , Radioquímica/métodos
18.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328342

RESUMEN

Multiple myeloma (MM) is characterized by remarkable cytogenetic/molecular heterogeneity among patients and intraclonal diversity even in a single patient. We previously demonstrated that PDPK1, the master kinase of series of AGC kinases, is universally active in MM, and plays pivotal roles in cell proliferation and cell survival of myeloma cells regardless of the profiles of cytogenetic and genetic abnormalities. This study investigated the therapeutic efficacy and mechanism of action of dual blockade of two major PDPK1 substrates, RSK2 and AKT, in MM. The combinatory treatment of BI-D1870, an inhibitor for N-terminal kinase domain (NTKD) of RSK2, and ipatasertib, an inhibitor for AKT, showed the additive to synergistic anti-tumor effect on human MM-derived cell lines (HMCLs) with active RSK2-NTKD and AKT, by enhancing apoptotic induction with BIM and BID activation. Moreover, the dual blockade of RSK2 and AKT exerted robust molecular effects on critical gene sets associated with myeloma pathophysiologies, such as those with MYC, mTOR, STK33, ribosomal biogenesis, or cell-extrinsic stimuli of soluble factors, in HMCLs. These results provide the biological and molecular rationales for the dual-targeting strategy for RSK2 and AKT, which may overcome the therapeutic difficulty due to cytogenetic/molecular heterogeneity in MM.


Asunto(s)
Mieloma Múltiple , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Línea Celular Tumoral , Proliferación Celular , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
19.
J Clin Biochem Nutr ; 70(2): 93-102, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35400827

RESUMEN

As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.

20.
Carcinogenesis ; 42(1): 148-158, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32710739

RESUMEN

Artesunate (ART) is a clinically approved antimalarial drug and was revealed as a candidate of colorectal cancer chemopreventive agents in our drug screening system. Here, we aimed to understand the suppressive effects of ART on intestinal tumorigenesis. In vitro, ART reduced T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter transcriptional activity. In vivo, ART inhibited intestinal polyp development. We found that ART reduces TCF1/TCF7 nuclear translocation by binding the Ras-related nuclear protein (RAN), suggesting that ART inhibits TCF/LEF transcriptional factor nuclear translocation by binding to RAN, thereby inhibiting Wnt signaling. Our results provide a novel mechanism through which artesunate inhibits intestinal tumorigenesis.


Asunto(s)
Poliposis Adenomatosa del Colon/prevención & control , Artesunato/farmacología , Carcinogénesis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Artesunato/uso terapéutico , Línea Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Transgénicos , Mutación , Regiones Promotoras Genéticas , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Activación Transcripcional/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA