Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(3): 723-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38538335

RESUMEN

Recently, liposomal formulations that target macrophages have been used to treat lung diseases. However, the detailed mechanism of the cellular uptake must be elucidated to identify a formulation with excellent cellular uptake efficiency to treat non-tuberculous mycobacterial lung disease. We studied the effect of lipid composition on the cellular uptake of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol (Chol) liposomes with a size of approximately 200 nm into THP-1-derived macrophages. The amount of DPPC/Chol liposomes (80/20 mol%) was greater than that of DPPC/Chol (60/40 mol%) and DPPC/Chol (67/33 mol%) liposomes. The anisotropy of 1,6-diphenyl-1,3,5-hexatriene indicated that the membrane fluidity of the DPPC/Chol (80/20 mol%) liposomes was higher than that of the other two liposomes. DPPC/Chol (80/20 mol%) and DPPC/Chol (67/33 mol%) liposomes were taken up via clathrin- and caveolae-mediated endocytosis and phagocytosis. However, proteins involved in cellular uptake through ligand-receptor interactions were adsorbed to a greater extent on DPPC/Chol (80/20 mol%) liposomes than on DPPC/Chol (67/33 mol%) liposomes. Pretreatment of cells with antibodies against the low-density lipoprotein receptor and scavenger receptor type B1 largely inhibited the uptake efficiency of DPPC/Chol (80/20 mol%) liposomes. Our results indicate that the membrane fluidity of DPPC/Chol liposomes, which is controlled by the Chol ratio, is an important factor in controlling protein adsorption and the subsequent uptake efficiency of liposomes.


Asunto(s)
Colesterol , Liposomas , Fluidez de la Membrana , Macrófagos/metabolismo
2.
Anal Biochem ; 669: 115130, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963556

RESUMEN

Small extracellular vesicles (sEVs) such as exosomes can efficiently deliver nucleic acids into the cytosol of recipient cells. However, the molecular mechanism of the subsequent fusion with an endosome is not well understood. In this study, we developed an in vitro lipid-mixing assay using an endosomal-mimicking anionic liposome to investigate the fusion between sEVs and endosomes. We observed that the particle number ratio between the sEVs and the anionic liposomes, the diameter of the liposomes, and the buffer pH were all important for fusion activity. Furthermore, we optimized the liposomal lipid composition and demonstrated that incorporating the anionic lipid bis(monooleoylglycero) phosphate and cholesterol was important for efficient and reliable fusion. Our in vitro assay suggested that a decrease in pH increased the fusion activity. Additionally, it was suggested that this pH-dependent increase in the fusion activity was predominantly due to a change in the sEVs. sEVs possess a larger fusion activity than artificial liposomes that mimic the physicochemical properties of exosomes. These results are consistent with those of previous in vivo studies, supporting the physiological relevance of our system. This study provides an important platform for further research to clarify the molecular mechanisms of fusion between sEVs and endosomes.


Asunto(s)
Exosomas , Liposomas , Liposomas/química , Endosomas , Lípidos/química
3.
Mol Pharm ; 19(1): 91-99, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913345

RESUMEN

Phosphatidylserine (PS) is a unique lipid that is recognized by the endogenetic receptor, T-cell immunoglobulin mucin protein 4 (Tim4), and PS-containing liposomes have potential use in therapeutic applications. We prepared PS-containing liposomes of various lipid compositions and examined how lipid membrane fluidity affects PS recognition by Tim4 and the resulting endocytosis efficiency into Hela cells. Surface plasmon resonance and laurdan studies showed that increasing lipid membrane fluidity increased the stability of the PS-Tim4 interaction but hampered the entry of liposomes into cells. These results show that endocytosis efficiency is determined by balancing opposing forces induced by membrane fluidity. We found that inclusion of the zwitterionic helper lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, into liposomes ensured efficient cellular internalization because the presence of this lipid provides an ideal balance of lipid fluidity and Tim4 affinity. The results showed that PS recognition by Tim4 and the resulting endocytosis efficiency can be maximized by modulating the membrane fluidity of liposomes by selecting a zwitterionic helper lipid. This study improves our understanding of how to rationally optimize nanotechnology for targeted drug delivery.


Asunto(s)
Endocitosis , Liposomas/metabolismo , Fluidez de la Membrana , Proteínas de la Membrana/metabolismo , Fosfatidilserinas , Endocitosis/efectos de los fármacos , Células HeLa , Humanos , Fluidez de la Membrana/efectos de los fármacos , Resonancia por Plasmón de Superficie
4.
Biosci Biotechnol Biochem ; 86(11): 1536-1542, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36085174

RESUMEN

Various d-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for d-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine ß-lyase possesses amino acid racemase activity in addition to ß-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares a relatively high amino acid sequence identity with cystathionine ß-lyase. The enzyme did not show racemase activity toward various amino acids including alanine and lyase and dehydratase activities were highest toward l-cystathionine and l-homoserine, respectively. The enzyme also showed weak activity toward l-cysteine and l-serine but no activity toward d-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.


Asunto(s)
Isomerasas de Aminoácido , Liasas , Humanos , Animales , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Aminoácidos , Cistationina , Cisteína , Homoserina , Liasas/metabolismo , Escherichia coli/metabolismo , Serina , Racemasas y Epimerasas , Alanina , Hidroliasas , Mamíferos/metabolismo
5.
AAPS PharmSciTech ; 23(5): 150, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35596094

RESUMEN

The present review discusses the current status and difficulties of the analytical methods used to evaluate size and surface modifications of nanoparticle-based pharmaceutical products (NPs) such as liposomal drugs and new SARS-CoV-2 vaccines. We identified the challenges in the development of methods for (1) measurement of a wide range of solid-state NPs, (2) evaluation of the sizes of polydisperse NPs, and (3) measurement of non-spherical NPs. Although a few methods have been established to analyze surface modifications of NPs, the feasibility of their application to NPs is unknown. The present review also examined the trends in standardization required to validate the size and surface measurements of NPs. It was determined that there is a lack of available reference materials and it is difficult to select appropriate ones for modified NP surface characterization. Research and development are in progress on innovative surface-modified NP-based cancer and gene therapies targeting cells, tissues, and organs. Next-generation nanomedicine should compile studies on the practice and standardization of the measurement methods for NPs to design surface modifications and ensure the quality of NPs.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas contra la COVID-19 , Composición de Medicamentos , Humanos , Tamaño de la Partícula , SARS-CoV-2
6.
J Neurosci ; 40(39): 7531-7544, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32855271

RESUMEN

d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.


Asunto(s)
Alanina/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Conducta Alimentaria , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/farmacología , Alanina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Movimiento , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Serina/metabolismo
7.
J Cell Biochem ; 122(11): 1639-1652, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289161

RESUMEN

Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Ácido Aspártico/metabolismo , Oxidorreductasas de Alcohol/genética , Ácido Aspártico/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , D-Aspartato Oxidasa/antagonistas & inhibidores , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacología , Células HEK293 , Células HeLa , Humanos , NADP , Piruvatos/metabolismo , Piruvatos/farmacología
8.
Amino Acids ; 53(6): 903-915, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33938999

RESUMEN

The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual component, D-lysine (D-Lys), in addition to the typical D-alanine (D-Ala) and D-glutamate (D-Glu). In a previous study, we identified a Lys racemase that is presumably associated with D-Lys biosynthesis. However, our understanding of D-amino acid metabolism in T. maritima and other bacteria remains limited, although D-amino acids in the peptidoglycan are crucial for preserving bacterial cell structure and resistance to environmental threats. Herein, we characterized enzymatic and structural properties of TM0356 that shares a high amino acid sequence identity with serine (Ser) racemase. The results revealed that TM0356 forms a tetramer with each subunit containing a pyridoxal 5'-phosphate as a cofactor. The enzyme did not exhibit racemase activity toward various amino acids including Ser, and dehydratase activity was highest toward L-threonine (L-Thr). It also acted on L-Ser and L-allo-Thr, but not on the corresponding D-amino acids. The catalytic mechanism did not follow typical Michaelis-Menten kinetics; it displayed a sigmoidal dependence on substrate concentration, with highest catalytic efficiency (kcat/K0.5) toward L-Thr. Interestingly, dehydratase activity was insensitive to allosteric regulators L-valine and L-isoleucine (L-Ile) at low concentrations, while these L-amino acids are inhibitors at high concentrations. Thus, TM0356 is a biosynthetic Thr dehydratase responsible for the conversion of L-Thr to α-ketobutyrate and ammonia, which is presumably involved in the first step of the biosynthesis of L-Ile.


Asunto(s)
Proteínas Bacterianas/química , Thermotoga maritima/enzimología , Treonina Deshidratasa/química , Proteínas Bacterianas/genética , Dominios Proteicos , Thermotoga maritima/genética , Treonina Deshidratasa/genética
9.
Chem Pharm Bull (Tokyo) ; 69(11): 1045-1053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719585

RESUMEN

For quantitative analysis, data should be obtained at a sample concentration that is within the range of linearity. We examined the effect of sample concentration on nanoparticle tracking analysis (NTA) of small extracellular vesicles (sEVs), including exosomes, by comparing NTA results of sEVs with those obtained for polystyrene nanoparticles (PSN) and liposomes, which mimic lipid composition and physicochemical properties of exosomes. Initially, NTA of PSN at different concentrations was performed and the particle sizes determined were validated by dynamic light scattering. The major peak maxima for PSN mixtures of different sizes at the higher particle numbers were similar, with some fluctuation of the minor peak maxima observed at the lower particle number, which was also observed for sEVs. Sample concentration is critical for obtaining reproducible data for liposomes and exosomes and increasing the sample concentration caused an increase in data variability because of particle interactions. The inter-day repeatability of particles sizes and concentration for sEVs were 7.47 and 4.51%, respectively. Analysis of the linearity range revealed that this was narrower for sEVs when compared with that of liposomes. Owing to the use of liposomes that mimic the lipid composition and physicochemical properties of exosomes and proteinase-treated sEVs, it was demonstrated that these different analytical results could be possibly caused by the protein corona of sEVs. Consideration of the sample concentration and linearity range is important for obtaining reproducible and reliable data of sEVs.


Asunto(s)
Exosomas/química , Vesículas Extracelulares/química , Liposomas/química , Nanopartículas/química , Imagen Individual de Molécula/métodos , Células HeLa , Células Hep G2 , Humanos , Células K562 , Límite de Detección , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidilserinas/química , Reproducibilidad de los Resultados
10.
Anal Biochem ; 605: 113838, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702438

RESUMEN

In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.


Asunto(s)
Colorimetría/métodos , Hidroliasas/análisis , Animales , Células Cultivadas , Fibroblastos , Ratones , Sensibilidad y Especificidad
11.
Langmuir ; 36(42): 12735-12744, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33054220

RESUMEN

Exosomes mediate communication between cells in the body by the incorporation and transfer of biological materials. To design an artificial liposome, which would mimic the lipid composition and physicochemical characteristics of naturally occurring exosomes, we first studied the physicochemical properties of exosomes secreted from HepG2 cells. The exosome stiffness obtained by atomic force microscopy was moderate. Some liposomes were then fabricated to mimic the representative reported lipid composition of exosomes. Their physicochemical properties and cellular internalization efficiencies were investigated to optimize the cellular internalization efficiency of the liposomes. A favorable internalization efficiency was obtained by incubating HeLa cells with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol (Chol)/1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) (40/40/20 mol %) liposomes, which have a similar stiffness and zeta potential to exosomes. A dramatic increase in internalization efficiency was demonstrated by adding DOPS to simple DSPC/Chol liposomes. We found that DOPS had a more desirable effect on cellular internalization than its saturated lipid counterpart, 1,2-distearoyl-sn-glycero-3-phospho-l-serine. Furthermore, it was shown that the phosphatidylserine-binding protein, T-cell immunoglobulin mucin protein 4, was largely involved in the intracellular transfer of DSPC/Chol/DOPS liposomes. Thus, DOPS was a key lipid to provide the appropriate stiffness, zeta potential, and membrane surface affinity of the resulting liposome. Our results may help develop efficient drug carriers aiming to internalize active substances into cells.


Asunto(s)
Exosomas , Liposomas , Colesterol , Células HeLa , Humanos , Lípidos , Fosfatidilcolinas
12.
Chem Pharm Bull (Tokyo) ; 68(8): 791-796, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741922

RESUMEN

Because of the complexity of nanomedicines, analysis of their morphology and size has attracted considerable attention both from researchers and regulatory agencies. The atomic force microscope (AFM) has emerged as a powerful tool because it can provide detailed morphological characteristics of nanoparticles both in the air and in aqueous medium. However, to our knowledge, AFM methods for nanomedicines have yet to be standardized or be listed in any pharmacopeias. To assess the applicability of standardization of AFM, in this study, we aimed to identify robust conditions for assessing the morphology and size of nanoparticles based on a polystyrene nanoparticle certified reference material standard. The spring constant of the cantilever did not affect the size of the nanoparticles but needed to be optimized depending on the measurement conditions. The size analysis method of the obtained images affected the results of the analyzed size values. The results analyzed by cross-sectional line profiling were independent of the measurement conditions and gave similar results to those from dynamic light scattering. It was indicated that approximately 100 particles are required for a representative measurement. Under the optimized conditions, there were no significant inter-instrument differences in the analyzed size values of polystyrene nanoparticles both in air and under aqueous conditions.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Nanomedicina , Tamaño de la Partícula , Poliestirenos/química , Reproducibilidad de los Resultados
13.
Chem Pharm Bull (Tokyo) ; 68(5): 473-478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32378545

RESUMEN

The mechanical strength (stiffness) of liposomes affects their cellular uptake efficiency and drug release in drug delivery processes. We recently developed a tip shape evaluation method for improving the precision of liposome stiffness measurement by quantitative imaging (QI)-mode atomic force microscopy (AFM). The present study applied our method to the widely-used AFM instruments equipped for intermittent contact (IC)-mode force curve measurements, and examined instrument-dependent factors that affect the liposome stiffness measurements. We demonstrated that the evaluation of the tip shape for cantilever selection can be applicable to the IC mode as well as the QI mode. With the cantilever selection, the improved precision of the liposome stiffness was obtained when the stiffness of each liposome was determined from the slope in the force-deformation curve by the IC-mode force curve measurement. Further, the stiffness values were found to be similar to that measured by QI-mode measurements. These results indicate that our developed method can be widely used via IC-mode force curve measurements as well as via QI mode. It was also revealed that spatial drift of the cantilever position was instrument-dependent factors which could affect the precision of liposome stiffness measurements in the case of IC-mode force curve measurement. Therefore, in case of stiffness measurement by IC-mode force curve measurement, it is vital to obtain force-deformation curves immediately after imaging a liposome for the precise stiffness measurement of liposomes. These findings will promote the usage of the AFM stiffness measurement method for the characterization of lipid nanoparticle-based drug delivery systems.


Asunto(s)
Lípidos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Liposomas/análisis , Microscopía de Fuerza Atómica
14.
Anal Chem ; 91(16): 10432-10440, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31390864

RESUMEN

The stiffness of nanoscale liposomes, as measured by atomic force microscopy (AFM), was investigated as a function of temperature, immobilization on solid substrates, and cantilever tip shape. The liposomes were composed of saturated lipids and cholesterol, and the stiffness values did not change over the temperature range of 25-37 °C and were independent of immobilization methods. However, the stiffness varied with the tip shape of the cantilever. Therefore, 24 cantilevers were evaluated in terms of tip shape and aspect ratio (length/width) via a nonblind tip reconstruction (NBTR) method that used a tip characterizer with isolated line structures having specified dimensions. A standard for screening the tip geometry was established. A 24-fold improvement in stiffness precision in terms of relative standard deviation was demonstrated by using at least three cantilevers that meet the criteria of having a tip aspect ratio greater than 2.5 and a quadratic tip shape function. A significant difference in stiffness was subsequently revealed between dipalmitoylphosphatidylcholine-cholesterol (1:1 molar ratio) and egg yolk phosphatidylcholine-cholesterol (1:1 molar ratio) liposomes. Tip analysis using NBTR improved the precision of AFM stiffness measurements, which will enable the control of mechanical properties of nanoscale liposomes for various applications.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Liposomas/química , Microscopía de Fuerza Atómica/métodos , Biotina/química , Ácidos Grasos Monoinsaturados/química , Vidrio/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Compuestos de Amonio Cuaternario/química , Estreptavidina/química , Temperatura , Agua/química
15.
AAPS PharmSciTech ; 20(2): 70, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631974

RESUMEN

The characterization of nanocrystalline active ingredients in multicomponent formulations for the design and manufacture of products with increased bioavailability is often challenging. The purpose of this study is to develop an atomic force microscopy (AFM) imaging method for the detailed morphological characterization of nanocrystalline active ingredients in multicomponent oral formulations. The AFM images of aprepitant and sirolimus nanoparticles in aqueous suspension show that their sizes are comparable with those measured using dynamic light scattering (DLS) analysis. The method also provides information on a wide-sized range of particles, including small particles that can often only be detected by DLS when larger particles are removed by additional filtration steps. An expected advantage of the AFM method is the ability to obtain a detailed information on particle morphology and stiffness, which allows the active pharmaceutical ingredient and excipient (titanium dioxide) particles to be distinguished. Selective imaging of particles can also be achieved by varying the surface properties of the AFM solid substrate, which allows to control the interactions between the substrate and the active pharmaceutical ingredient and excipient particles. AFM analysis in combination with other methods (e.g., DLS), should facilitate the rational development of formulations based on nanoparticles.


Asunto(s)
Aprepitant/química , Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Sirolimus/química , Administración Oral , Composición de Medicamentos , Excipientes , Luz , Tamaño de la Partícula , Dispersión de Radiación , Propiedades de Superficie
16.
Langmuir ; 34(26): 7805-7812, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29869883

RESUMEN

It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.


Asunto(s)
Lípidos/química , Liposomas/química , Microscopía de Fuerza Atómica , Nanopartículas/química , Distribución Tisular
17.
Anal Bioanal Chem ; 410(5): 1525-1531, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29256078

RESUMEN

Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.


Asunto(s)
Microscopía de Fuerza Atómica , Nanopartículas/química , Tamaño de la Partícula , Agua/química , Liposomas/química , Microscopía de Fuerza Atómica/métodos , Poliestirenos/química
18.
Chem Pharm Bull (Tokyo) ; 66(8): 805-809, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30068800

RESUMEN

We developed a rapid and efficient analytical technique for cyclosporine A using HPLC on a column packed with 2-µm nonporous octadecylsilyl silica particles. Under optimized conditions, cyclosporine A was separated with high resolution from other cyclic peptides within 3 min, because the mass transfer resistance in the stationary phase was reduced by the use of the small, nonporous particles. Although the plate number increased greatly with the increase in the column temperature, the retention times were not affected. This behavior is different from other cyclic peptides or linear peptides. Based on its physicochemical characteristics, cyclosporine A is a poor hydrogen bond donor, and has a small topological polar surface area, low rotatable bond count, and high log P value. These results show that cyclosporine A is structurally rigid and undergoes poor water solvation even at high temperature. In the context of the rapid development of cyclic peptides with similar physicochemical characteristics to cyclosporine A, our developed method is useful for the development of cyclic peptide therapeutics.


Asunto(s)
Ciclosporina/aislamiento & purificación , Dióxido de Silicio/química , Cromatografía Líquida de Alta Presión/métodos , Ciclosporina/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Agua
19.
Biochim Biophys Acta ; 1858(6): 1339-49, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27003128

RESUMEN

The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.


Asunto(s)
Arginina/química , Permeabilidad de la Membrana Celular , Glicosaminoglicanos/química , Péptidos/química , Sulfatos/química , Termodinámica , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Heparina/química , Datos de Secuencia Molecular , Espectroscopía de Protones por Resonancia Magnética , Liposomas Unilamelares
20.
Biochim Biophys Acta Biomembr ; 1859(11): 2253-2258, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28888368

RESUMEN

In this study, HepG2 cells, an in vitro model system for human hepatocytes, were used to evaluate the interaction of lipoprotein receptors with liposomes carrying fluorescently labeled cholesterol and their subsequent intracellular uptake. In these experiments, two lipoprotein receptors, scavenger receptor class B type 1 (SR-B1) and low-density lipoprotein receptor (LDLR), accounted for approximately 20% and 10%, respectively, of the intracellular uptake of the labeled liposomes. These findings indicate that additional mechanisms contributed to liposomal internalization. Liposomes modified with both apolipoproteins A-I and E were internalized in HepG2 cells in FBS-depleted culture medium at the same levels as unmodified liposomes in FBS-containing culture medium, which indicates that apolipoproteins A-I and E were the major serum components involved in liposomal binding to SR-B1 or LDLR (or both). These results increase our understanding of the disposition of liposomes, processes that can directly affect the efficacy and safety of drug products.


Asunto(s)
Hepatocitos/metabolismo , Liposomas/farmacocinética , Receptores de LDL/fisiología , Receptores Depuradores de Clase B/fisiología , Apolipoproteínas A/metabolismo , Transporte Biológico , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA