Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biotechnol ; 13: 72, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24047152

RESUMEN

BACKGROUND: Anthrax is a zoonotic disease recognized to affect herbivores since Biblical times and has the widest range of susceptible host species of any known pathogen. The ease with which the bacterium can be weaponized and its recent deliberate use as an agent of terror, have highlighted the importance of gaining a deeper understanding and effective countermeasures for this important pathogen. High quality sequence data has opened the possibility of systematic dissection of how genes distributed on both the bacterial chromosome and associated plasmids have made it such a successful pathogen. However, low transformation efficiency and relatively few genetic tools for chromosomal manipulation have hampered full interrogation of its genome. RESULTS: Group II introns have been developed into an efficient tool for site-specific gene inactivation in several organisms. We have adapted group II intron targeting technology for application in Bacillus anthracis and generated vectors that permit gene inactivation through group II intron insertion. The vectors developed permit screening for the desired insertion through PCR or direct selection of intron insertions using a selection scheme that activates a kanamycin resistance marker upon successful intron insertion. CONCLUSIONS: The design and vector construction described here provides a useful tool for high throughput experimental interrogation of the Bacillus anthracis genome and will benefit efforts to develop improved vaccines and therapeutics.


Asunto(s)
Bacillus anthracis/genética , Marcación de Gen/métodos , Genes Bacterianos , Vectores Genéticos , Cromosomas Bacterianos/genética , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/genética , Intrones , Mutagénesis Insercional , Conformación de Ácido Nucleico , Plásmidos/genética , Selección Genética
2.
ACS Biomater Sci Eng ; 9(9): 5136-5150, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198112

RESUMEN

Synbiotics are a new class of live therapeutics employing engineered genetic circuits. The rapid adoption of genetic editing tools has catalyzed the expansion of possible synbiotics, exceeding traditional testing paradigms in terms of both throughput and model complexity. Herein, we present a simplistic gut-chip model using common Caco2 and HT-29 cell lines to establish a dynamic human screening platform for a cortisol sensing tryptamine producing synbiotic for cognitive performance sustainment. The synbiotic, SYN, was engineered from the common probiotic E. coli Nissle 1917 strain. It had the ability to sense cortisol at physiological concentrations, resulting in the activation of a genetic circuit that produces tryptophan decarboxylase and converts bioavailable tryptophan to tryptamine. SYN was successfully cultivated within the gut-chip showing log-phase growth comparable to the wild-type strain. Tryptophan metabolism occurred quickly in the gut compartment when exposed to 5 µM cortisol, resulting in the complete conversion of bioavailable tryptophan into tryptamine. The flux of tryptophan and tryptamine from the gut to the vascular compartment of the chip was delayed by 12 h, as indicated by the detectable tryptamine in the vascular compartment. The gut-chip provided a stable environment to characterize the sensitivity of the cortisol sensor and dynamic range by altering cortisol and tryptophan dosimetry. Collectively, the human gut-chip provided human relevant apparent permeability to assess tryptophan and tryptamine metabolism, production, and transport, enabled host analyses of cellular viability and pro-inflammatory cytokine secretion, and succeeded in providing an efficacy test of a novel synbiotic. Organ-on-a-chip technology holds promise in aiding traditional therapeutic pipelines to more rapidly down select high potential compounds that reduce the failure rate and accelerate the opportunity for clinical intervention.


Asunto(s)
Escherichia coli , Triptófano , Humanos , Células CACO-2 , Escherichia coli/genética , Hidrocortisona , Bacterias/metabolismo , Triptaminas/metabolismo , Dispositivos Laboratorio en un Chip
3.
Front Med (Lausanne) ; 8: 749732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589507

RESUMEN

In response to the COVID-19 pandemic, immediate and scalable testing solutions are needed to direct return to full capacity planning in the general public and across the Department of Defense (DoD). To fully understand the extent to which a population has been affected by COVID-19, active monitoring approaches require an estimation of overall seroprevalence in addition to accurate, affordable, and rapid tests to detect current SARS-CoV-2 infection. In this study, researchers in the Air Force Research Laboratory's 711th Human Performance Wing, Airman Systems Directorate evaluated the performance of various testing methods for the detection of SARS-CoV-2 antibodies and viral RNA in asymptomatic adults working at Wright-Patterson Air Force Base and the surrounding area during the period of 23 July 2020-23 Oct 2020. Altogether, there was a seroprevalance of 3.09% and an active infection rate of 0.5% (determined via the testing of saliva samples) amongst individuals tested, both of which were comparable to local and national averages at the time. This work also presents technical and non-technical assessments of various testing strategies as compared to the gold standard approaches (e.g., lateral flow assays vs. ELISA and RT-LAMP vs. RT-PCR) in order to explore orthogonal supply chains and fieldability. Exploration and validation of multiple testing strategies will allow the DoD and other workforces to make informed responses to COVID-19 and future pandemics.

4.
J Mol Biol ; 318(2): 287-303, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-12051838

RESUMEN

Mobile group II introns encode reverse transcriptases that bind specifically to the intron RNAs to promote both intron mobility and RNA splicing (maturase activity). Previous studies with the Lactococcus lactis Ll.LtrB intron suggested a model in which the intron-encoded protein (LtrA) binds first to a primary high-affinity binding site in intron subdomain DIVa, an idiosyncratic structure at the beginning of the LtrA coding sequence, and then makes additional contacts with conserved regions of the intron to fold the RNA into the catalytically active structure. Here, we analyzed the DIVa binding site by iterative in vitro selection and in vitro mutagenesis. Our results show that LtrA binds to a small region at the distal end of DIVa that contains the ribosome-binding site and initiation codon of the LtrA open reading frame. The critical elements are in a small stem-loop structure emanating from a purine-rich internal loop, with both sequence and structure playing a role in LtrA recognition. The ribosome-binding site falls squarely within the LtrA-binding region and is sequestered directly by the binding of LtrA or by stabilization of the small stem-loop or both. Finally, by using LacZ fusions in Escherichia coli, we show that the binding of LtrA to DIVa down-regulates translation. This mode of regulation limits accumulation of the potentially deleterious intron-encoded protein and may facilitate splicing by halting ribosome entry into the intron. The recognition of the DIVa loop-stem-loop structure accounts, in part, for the intron specificity of group II intron maturases and has parallels in template-recognition mechanisms used by other reverse transcriptases.


Asunto(s)
Lactococcus lactis/genética , Lactococcus lactis/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Escherichia coli/genética , Genes Reporteros , Variación Genética , Intrones , Operón Lac , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Empalme del ARN , ARN Bacteriano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA