Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 243, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997742

RESUMEN

Histone methyltransferases (HMTs) are enzymes that regulate histone methylation and play an important role in controlling transcription by altering the chromatin structure. Aberrant activation of HMTs has been widely reported in certain types of neoplastic cells. Among them, G9a/EHMT2 and GLP/EHMT1 are crucial for H3K9 methylation, and their dysregulation has been associated with tumor initiation and progression in different types of cancer. More recently, it has been shown that G9a and GLP appear to play a critical role in several lymphoid hematologic malignancies. Importantly, the key roles played by both enzymes in various diseases made them attractive targets for drug development. In fact, in recent years, several groups have tried to develop small molecule inhibitors targeting their epigenetic activities as potential anticancer therapeutic tools. In this review, we discuss the physiological role of GLP and G9a, their oncogenic functions in hematologic malignancies of the lymphoid lineage, and the therapeutic potential of epigenetic drugs targeting G9a/GLP for cancer treatment.

2.
Cytotherapy ; 26(10): 1141-1151, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38904584

RESUMEN

BACKGROUND AND AIMS: Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS: MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS: Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS: MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Ovario , Animales , Femenino , Bovinos , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ovario/citología , Tejido Adiposo/citología , Fertilización In Vitro/métodos , Proliferación Celular , Movimiento Celular
3.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35460166

RESUMEN

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Asunto(s)
Antioxidantes , Fármacos Neuroprotectores , Animales , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Ratones , Microglía/metabolismo , Péptidos/química , Ranidae/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
4.
J Nat Prod ; 85(12): 2695-2705, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36508333

RESUMEN

In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.


Asunto(s)
Bothrops , Venenos de Crotálidos , Neuroblastoma , Fármacos Neuroprotectores , Animales , Humanos , Antioxidantes/farmacología , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología , Péptidos , Venenos de Serpiente
5.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430835

RESUMEN

The culture of mesenchymal stem cells (MSCs) as spheroids promotes a more physiological cellular behavior, as it more accurately reflects the biological microenvironment. Nevertheless, mixed results have been found regarding the immunosuppressive properties of spheroid-cultured MSCs (3D-MSCs), the mechanisms of immunoregulation of 3D-MSCs being scarcely described at this point. In the present study, we constructed spheroids from MSCs and compared their immunosuppressive potential with that of MSCs cultured in monolayer (2D-MSCs). First, we evaluated the ability of 2D-MSCs and 3D-MSCs to control the activation and proliferation of T-cells. Next, we evaluated the percentage of regulatory T-cells (Tregs) after the co-culturing of peripheral blood mononuclear cells (PBMCs) with 2D-MSCs and 3D-MSCs. Finally, we investigated the expression of adhesion molecules, as well as the expressions of several anti-inflammatory transcripts in 2D-MSCs and 3D-MSCs maintained in both inflammatory and non-inflammatory conditions. Interestingly, our data show that several anti-inflammatory genes are up-regulated in 3D-MSCs, and that these cells can control T-cell proliferation. Nevertheless, 2D-MSCs are more efficient in suppressing the immune cell proliferation. Importantly, contrary to what was observed in 3D-MSCs, the expressions of ICAM-1 and VCAM-1 are significantly upregulated in 2D-MSCs exposed to an inflammatory environment. Furthermore, only 2D-MSCs are able to promote the enhancement of Tregs. Taken together, our data clearly show that the immunosuppressive potential of MSCs is significantly impacted by their shape, and highlights the important role of cell-cell adhesion molecules for optimal MSC immunomodulatory function.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T Reguladores , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Antiinflamatorios/metabolismo
6.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34753356

RESUMEN

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Asunto(s)
Antioxidantes , Agua , Animales , Antioxidantes/análisis , Anuros/fisiología , Humanos , Mamíferos , Péptidos/análisis , Piel , Agua/análisis
7.
Invest New Drugs ; 36(5): 955-960, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29855824

RESUMEN

Background Heterodimeric methyltransferases GLP (EHMT1/KMT1D) and G9a (EHMT2/KMT1C) are two closely related enzymes that promote the monomethylation and dimethylation of histone H3 lysine 9. Dysregulation of their activity has been implicated in several types of human cancer. Patients and methods Here, in order to investigate whether GLP/G9a exerts any impact on Chronic Lymphocytic Leukemia (CLL), GLP/G9a expression levels were assessed in a cohort of 50 patients and the effects of their inhibition were verified for the viability of CLL cells. Also, qRT-PCR was used to investigate the transcriptional levels of GLP/G9a in CLL patients. In addition, patient samples were classified according to ZAP-70 protein expression by flow cytometry and according to karyotype integrity by cytogenetics analysis. Finally, a selective small molecule inhibitor for GLP/G9a was used to ascertain whether these methyltransferases influenced the viability of MEC-1 CLL cell lineage. Results mRNA analysis revealed that CLL samples had higher levels of GLP, but not G9a, when compared to non-leukemic controls. Interestingly, patients with unfavorable cytogenetics showed higher expression levels of GLP compared to patients with favorable karyotypes. More importantly, GLP/G9a inhibition markedly induced cell death in CLL cells. Conclusion Taken together, these results indicate that GLP is associated with a worse prognosis in CLL, and that the inhibition of GLP/G9a influences CLL cell viability. Altogether, the present data demonstrate that these methyltransferases can be potential markers for disease progression, as well as a promising epigenetic target for CLL treatment and the prevention of disease evolution.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Linfocítica Crónica de Células B/genética , Adulto , Anciano , Anciano de 80 o más Años , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Proteína Tirosina Quinasa ZAP-70/metabolismo
8.
Cancer Cell Int ; 18: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29483845

RESUMEN

BACKGROUND: Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm whose pathogenesis is linked to the Philadelphia chromosome presence that generates the BCR-ABL1 fusion oncogene. Tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM) dramatically improved the treatment efficiency and survival of CML patients by targeting BCR-ABL tyrosine kinase. The disease shows three distinct clinical-laboratory stages: chronic phase, accelerated phase and blast crisis. Although patients in the chronic phase respond well to treatment, patients in the accelerated phase or blast crisis usually show therapy resistance and CML relapse. It is crucial, therefore, to identify biomarkers to predict CML genetic evolution and resistance to TKI therapy, considering not only the effects of genetic aberrations but also the role of epigenetic alterations during the disease. Although dysregulations in epigenetic modulators such as histone methyltrasnferases have already been described for some hematologic malignancies, to date very limited data is available for CML, especially when considering the lysine methyltransferase MLL2/KMT2D and MLL3/KMT2C. METHODS: Here we investigated the expression profile of both genes in CML patients in different stages of the disease, in patients showing different responses to therapy with IM and in non-neoplastic control samples. Imatinib sensitive and resistant CML cell lines were also used to investigate whether treatment with other tyrosine kinase inhibitors interfered in their expression. RESULTS: In patients, both methyltransferases were either upregulated or with basal expression level during the chronic phase compared to controls. Interestingly, MLL3/KMT2C and specially MLL2/KMT2D levels decreased during disease progression correlating with distinct clinical stages. Furthermore, MLL2/KMT2D was decreased in patients resistant to IM treatment. A rescue in the expression of both MLL genes was observed in KCL22S, a CML cell line sensitive to IM, after treatment with dasatinib or nilotinib which was associated with a higher rate of apoptosis, an enhanced expression of p21 (CDKN1A) and a concomitant decrease in the expression of CDK2, CDK4 and Cyclin B1 (CCNB1) in comparison to untreated KCL22S control or IM resistant KCL22R cell line, which suggests involvement of p53 regulated pathway. CONCLUSION: Our results established a new association between MLL2/KMT2D and MLL3/KMT2C genes with CML and suggest that MLL2/KMT2D is associated with disease evolution and may be a potential marker to predict the development of therapy resistance.

9.
Tumour Biol ; 37(7): 9473-81, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26790435

RESUMEN

SET and MYND domain containing 2 (SMYD2) and the SET and MYND domain containing 3 (SMYD3) are the most studied and well-characterized members of SMYD family. It has been demonstrated that their altered expression is associated with the progression of several solid tumors. Nevertheless, whether these methyltransferases exert any impact in chronic lymphocytic leukemia (CLL) remains unknown. Here, we investigated the gene expression profile of SMYD2 and SMYD3 in 59 samples of CLL and 10 normal B cells. The obtained results were associated with white blood cells (WBC) and platelet counts, ZAP-70 protein expression, and cytogenetic analysis. We found that SMYD2 and SMYD3 are overexpressed in CLL patients and, interestingly, patients with residual expression of both genes presented a high WBC count and complex karyotype. Furthermore, a strong correlation between SMYD2 and SMYD3 gene expression was unveiled. Our data demonstrate the association of a residual expression of SMYD2 and SMYD3 with CLL progression indicators and suggests both genes are regulated by a common transcriptional control in this type of cancer. These results may provide the basis for the development of new therapeutic strategies to prevent CLL progression.


Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Linfocítica Crónica de Células B/genética , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Cariotipificación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Purinergic Signal ; 12(4): 595-609, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27557887

RESUMEN

Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.


Asunto(s)
Adenosina/metabolismo , Tolerancia Inmunológica/fisiología , Células Madre Mesenquimatosas/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA