Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Genomics ; 22(1): 180, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33711921

RESUMEN

BACKGROUND: The ever-increasing prevalence of diabetes and associated comorbidities serves to highlight the necessity of biologically relevant small-animal models to investigate its etiology, pathology and treatment. Although the C57BL/6 J model is amongst the most widely used mouse model due to its susceptibility to diet-induced obesity (DIO), there are a number of limitations namely [1] that unambiguous fasting hyperglycemia can only be achieved via dietary manipulation and/or chemical ablation of the pancreatic beta cells. [2] Heterogeneity in the obesogenic effects of hypercaloric feeding has been noted, together with sex-dependent differences, with males being more responsive. The KK mouse strain has been used to study aspects of the metabolic syndrome and prediabetes. We recently conducted a study which characterized the differences in male and female glucocentric parameters between the KK/HlJ and C57BL/6 J strains as well as diabetes-related behavioral differences (Inglis et al. 2019). In the present study, we further characterize these models by examining strain- and sex-dependent differences in pancreatic and adrenal gene expression using Affymetrix microarray together with endocrine-associated serum analysis. RESULTS: In addition to strain-associated differences in insulin tolerance, we found significant elevations in KK/HlJ mouse serum leptin, insulin and aldosterone. Additionally, glucagon and corticosterone were elevated in female mice of both strains. Using 2-factor ANOVA and a significance level set at 0.05, we identified 10,269 pancreatic and 10,338 adrenal genes with an intensity cut-off of ≥2.0 for all 4 experimental groups. In the pancreas, gene expression upregulated in the KK/HlJ strain related to increased insulin secretory granule biofunction and pancreatic hyperplasia, whereas ontology of upregulated adrenal differentially expressed genes (DEGs) related to cell signaling and neurotransmission. We established a network of functionally related DEGs commonly upregulated in both endocrine tissues of KK/HlJ mice which included the genes coding for endocrine secretory vesicle biogenesis and regulation: PCSK2, PCSK1N, SCG5, PTPRN, CHGB and APLP1. We also identified genes with sex-biased expression common to both strains and tissues including the paternally expressed imprint gene neuronatin. CONCLUSION: Our novel results have further characterized the commonalities and diversities of pancreatic and adrenal gene expression between the KK/HlJ and C57BL/6 J strains as well as differences in serum markers of endocrine physiology.


Asunto(s)
Células Secretoras de Insulina , Insulina , Animales , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales
2.
Eur Respir J ; 54(1)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31073086

RESUMEN

BACKGROUND: Pulmonary fibrosis is one of the leading indications for lung transplantation. The disease, which is of unknown aetiology, can be progressive, resulting in distortion of the extracellular matrix (ECM), inflammation, fibrosis and eventual death. METHODS: 13 patients born to consanguineous parents from two unrelated families presenting with interstitial lung disease were clinically investigated. Nine patients developed respiratory failure and subsequently died. Molecular genetic investigations were performed on patients' whole blood or archived tissues, and cell biological investigations were performed on patient-derived fibroblasts. RESULTS: The combination of a unique pattern of early-onset lung fibrosis (at 12-15 years old) with distinctive radiological findings, including 1) traction bronchiectasis, 2) intralobular septal thickening, 3) shrinkage of the secondary pulmonary lobules mainly around the bronchovascular bundles and 4) early type 2 respiratory failure (elevated blood carbon dioxide levels), represents a novel clinical subtype of familial pulmonary fibrosis. Molecular genetic investigation of families revealed a hypomorphic variant in S100A3 and a novel truncating mutation in S100A13, both segregating with the disease in an autosomal recessive manner. Family members that were either heterozygous carriers or wild-type normal for both variants were unaffected. Analysis of patient-derived fibroblasts demonstrated significantly reduced S100A3 and S100A13 expression. Further analysis demonstrated aberrant intracellular calcium homeostasis, mitochondrial dysregulation and differential expression of ECM components. CONCLUSION: Our data demonstrate that digenic inheritance of mutations in S100A3 and S100A13 underlie the pathophysiology of pulmonary fibrosis associated with a significant reduction of both proteins, which suggests a calcium-dependent therapeutic approach for management of the disease.


Asunto(s)
Pulmón/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/fisiopatología , Proteínas S100/genética , Adolescente , Niño , Salud de la Familia , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Fibrosis Pulmonar/diagnóstico , Arabia Saudita
3.
J Immunol ; 191(5): 2796-805, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872050

RESUMEN

Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Galα1,3Galß1,4GlcNAc-R (Galα1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Galα1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Galα1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Galα1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.


Asunto(s)
Rechazo de Injerto/inmunología , Proteína Kangai-1/inmunología , Trasplante Heterólogo/inmunología , Animales , Western Blotting , Células Endoteliales/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos
4.
Front Immunol ; 14: 1289769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162642

RESUMEN

Introduction: The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods: Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results: Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion: We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.


Asunto(s)
Camelus , Cadenas Pesadas de Inmunoglobulina , Animales , Conejos , ADN Complementario , Inmunoglobulina G , Inmunoglobulina A
5.
Biomolecules ; 12(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625658

RESUMEN

Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model. Fifteen sheep (Ovis aries) underwent supracoronary aortic banding using an inflatable cuff. Controlled and progressive induction of pressure overload in the LV was monitored by echocardiography. Endomyocardial biopsies were collected throughout the development of LV failure (LVF) and during the stage of recovery. RNA-seq data were analysed using the PANTHER database, Metascape, and DisGeNET to annotate the gene expression for functional ontologies. Echocardiography revealed distinct clinical differences between the progressive stages of hypertrophy, dilatation, and failure. A unique set of transcript expressions in each stage was identified, despite an overlap of gene expression. The removal of pressure overload allowed the LV to recover functionally. Compared to the control stage, there were a total of 256 genes significantly changed in their expression in failure, 210 genes in hypertrophy, and 73 genes in dilatation. Gene expression in the recovery stage was comparable with the control stage with a well-noted improvement in LV function. RNA-seq revealed the expression of genes in each stage that are not reported in cardiovascular pathology. We identified genes that may be potentially involved in the aetiology of progressive stages of HF, and that may provide future targets for its management.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Animales , Ecocardiografía , Corazón , Insuficiencia Cardíaca/diagnóstico , Hipertrofia , Ovinos
6.
BMC Genomics ; 12: 555, 2011 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-22078008

RESUMEN

BACKGROUND: A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation. Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of Trans-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG. METHODS: We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice. RESULTS: Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including Gata4, Mef2d and Srebf2. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes. CONCLUSION: Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.


Asunto(s)
Grasas de la Dieta/efectos adversos , Corazón/fisiopatología , Nutrigenómica , Caracteres Sexuales , Glutamato de Sodio/efectos adversos , Ácidos Grasos trans/efectos adversos , Transcriptoma , Animales , Peso Corporal , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Br J Nutr ; 106(2): 218-26, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21429276

RESUMEN

The incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing, and new experimental models are required to investigate the diverse aspects of these polygenic diseases, which are intimately linked in terms of aetiology. Feline T2DM has been shown to closely resemble human T2DM in terms of its clinical, pathological and physiological features. Our aim was to develop a feline model of diet-induced weight gain, adiposity and metabolic deregulation, and to examine correlates of weight and body fat change, insulin homeostasis, lipid profile, adipokines and clinical chemistry, in order to study associations which may shed light on the mechanism of diet-induced metabolic dysregulation. We used a combination of partially hydrogenated vegetable shortening and high-fructose corn syrup to generate a high-fat-high-fructose diet. The effects of this diet were compared with an isoenergetic standard chow, either in the presence or absence of 1.125 % dietary monosodium glutamate (MSG). Dual-energy X-ray absorptiometry body imaging and a glucose tolerance test were performed. The present results indicate that dietary MSG increased weight gain and adiposity, and reduced insulin sensitivity (P < 0.05), whereas high-fat-high-fructose feeding resulted in elevated cortisol and markers of liver dysfunction (P < 0.01). The combination of all three dietary constituents resulted in lower insulin levels and elevated serum ß-hydroxybutyrate and cortisol (P < 0.05). This combination also resulted in a lower first-phase insulin release during glucose tolerance testing (P < 0.001). In conclusion, markers of insulin deregulation and metabolic dysfunction associated with adiposity and T2DM can be induced by dietary factors in a feline model.


Asunto(s)
Dieta , Fructosa/efectos adversos , Resistencia a la Insulina , Obesidad/etiología , Glutamato de Sodio/efectos adversos , Ácidos Grasos trans/efectos adversos , Aumento de Peso/efectos de los fármacos , Ácido 3-Hidroxibutírico/sangre , Absorciometría de Fotón , Adipoquinas/sangre , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Adiposidad/efectos de los fármacos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Gatos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/veterinaria , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Sacarosa en la Dieta/efectos adversos , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Hidrocortisona/sangre , Insulina/sangre , Lípidos/sangre , Hígado/efectos de los fármacos , Obesidad/metabolismo , Obesidad/veterinaria , Aceites de Plantas/efectos adversos
8.
Front Immunol ; 11: 355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269562

RESUMEN

The complement system is an ancient innate immune defense mechanism that can recognize molecular patterns on the invading pathogens. Factor H, as an inhibitor of the alternative pathway, down-regulates complement activation on the host cell surface. Locally synthesized factor H at the site of infection/injury, including lungs, can act as a pattern recognition molecule without involving complement activation. Here, we report that factor H, a sialic acid binder, interacts with influenza A virus (IAV) and modulates IAV entry, as evident from down-regulation of matrix protein 1 (M1) in H1N1 subtype-infected cells and up-regulation of M1 expression in H3N2-infected A549 cells. Far-western blot revealed that factor H binds hemagglutinin (HA, ~70 kDa), neuraminidase (NA, ~60 kDa), and M1 (~25 kDa). IAV-induced transcriptional levels of IFN-α, TNF-α, IL-12, IL-6, IFN-α, and RANTES were reduced following factor H treatment for the H1N1 subtype at 6 h post-infection. However, for the H3N2 subtype, mRNA levels of these pro-inflammatory cytokines were enhanced. A recombinant form of vaccinia virus complement control protein (VCP), which like factor H, contains CCP modules and has complement-regulatory activity, mirrored the results obtained with factor H. Both factor H (25%), and VCP (45%) were found to reduce luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles. Factor H (50%) and VCP (30%) enhanced the luciferase reporter activity for H3N2, suggesting an entry inhibitory role of factor H and VCP against H1N1, but not H3N2. Thus, factor H can modulate IAV infection and inflammatory responses, independent of its complement-related functions.


Asunto(s)
Factor H de Complemento/farmacología , Proteínas del Sistema Complemento/fisiología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/inmunología , Animales , Antiinflamatorios/farmacología , Inactivadores del Complemento/farmacología , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Internalización del Virus/efectos de los fármacos
9.
J Lipid Res ; 50(8): 1521-37, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19001666

RESUMEN

The effects of dietary monosodium glutamate (MSG) on trans-fatty acid (TFA)-induced nonalcoholic fatty liver disease (NAFLD) are addressed in an animal model. We used Affymetrix microarray analysis to investigate hepatic gene expression and the contribution of visceral white adipose tissue (WAT) to diet-induced NAFLD. Trans-fat feeding increased serum leptin, FFA, HDL-cholesterol (HDL-C), and total cholesterol (T-CHOL) levels, while robustly elevating the expression of genes involved in hepatic lipogenesis, including the transcription factor sterol-regulatory element binding protein 1c. Histological examination revealed hepatic macrosteatosis in TFA-fed animals. Conversely, dietary MSG at doses similar to human average daily intake caused hepatic microsteatosis and the expression of beta-oxidative genes. Serum triglyceride, FFA, and insulin levels were elevated in MSG-treated animals. The abdominal cavities of TFA- or MSG-treated animals had increased WAT deposition compared with controls. Microarray analysis of WAT gene expression revealed increased lipid biosynthetic gene expression, together with a 50% decrease in the key transcription factor Ppargc1a. A combination of TFA+MSG resulted in the highest levels of serum HDL-C, T-CHOL, and leptin. Microarray analysis of TFA+MSG-treated livers showed elevated expression of markers of hepatic inflammation, lipid storage, cell damage, and cell cycle impairment. TFA+MSG mice also had a high degree of WAT deposition and lipogenic gene expression. Levels of Ppargc1a were further reduced to 25% by TFA+MSG treatment. MSG exacerbates TFA-induced NAFLD.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Hígado Graso/patología , Grasa Intraabdominal/patología , Hígado/patología , Glutamato de Sodio/administración & dosificación , Ácidos Grasos trans/administración & dosificación , Adiposidad/efectos de los fármacos , Adiposidad/genética , Animales , Glucemia/análisis , Tamaño de la Célula/efectos de los fármacos , Colesterol/sangre , Dieta , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/sangre , Grasa Intraabdominal/efectos de los fármacos , Leptina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Embarazo , Glutamato de Sodio/toxicidad , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ácidos Grasos trans/toxicidad , Transactivadores/genética , Factores de Transcripción
10.
Data Brief ; 21: 2395-2397, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30547064

RESUMEN

The data set presented here is associated with the article "Intracellular calcium and NF-kB regulate hypoxia-induced leptin, VEGF, IL-6 and adiponectin secretion in human adipocytes" (Al-Anazi et al., 2018). Data illustrate hypoxia-induced VEGF and leptin expression in human adipocytes treated with the calcium chelator BAPTA-AM (1 µM). It also shows NF-κB p65 induced expression by hypoxia. Preadipocytes were differentiated for 14 days and then subjected to 0.5-1.5% oxygen in the presence and absence of BAPTA-AM or the NF-κB inhibitor SN50 for 48 h prior to RNA isolation and PCR analysis.

11.
PLoS One ; 13(3): e0194416, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561882

RESUMEN

RATIONALE: Aspartame (L-aspartyl phenylalanine methyl ester) is a non-nutritive sweetener (NNS) approved for use in more than 6000 dietary products and pharmaceuticals consumed by the general public including adults and children, pregnant and nursing mothers. However a recent prospective study reported a doubling of the risk of being overweight amongst 1-year old children whose mothers consumed NNS-sweetened beverages daily during pregnancy. We have previously shown that chronic aspartame (ASP) exposure commencing in utero may detrimentally affect adulthood adiposity status, glucose metabolism and aspects of behavior and spatial cognition, and that this can be modulated by developmental N-methyl-D-aspartate receptor (NMDAR) blockade with the competitive antagonist CGP 39551 (CGP). Since glucose homeostasis and certain aspects of behavior and locomotion are regulated in part by the NMDAR-rich hypothalamus, which is part of the hypothalamic-pituitary-adrenal- (HPA) axis, we have elected to examine changes in hypothalamic and adrenal gene expression in response to ASP exposure in the presence or absence of developmental NMDAR antagonism with CGP, using Affymetrix microarray analysis. RESULTS: Using 2-factor ANOVA we identified 189 ASP-responsive differentially expressed genes (DEGs) in the adult male hypothalamus and 2188 in the adrenals, and a further 23 hypothalamic and 232 adrenal genes significantly regulated by developmental treatment with CGP alone. ASP exposure robustly elevated the expression of a network of genes involved in hypothalamic neurosteroidogenesis, together with cell stress and inflammatory genes, consistent with previous reports of aspartame-induced CNS stress and oxidative damage. These genes were not differentially expressed in ASP mice with CGP antagonism. In the adrenal glands of ASP-exposed mice, GABA and Glutamate receptor subunit genes were amongst those most highly upregulated. Developmental NMDAR antagonism alone had less effect on adulthood gene expression and affected mainly hypothalamic neurogenesis and adrenal steroid metabolism. Combined ASP + CGP treatment mainly upregulated genes involved in adrenal drug and cholesterol metabolism. CONCLUSION: ASP exposure increased the expression of functional networks of genes involved in hypothalamic neurosteroidogenesis and adrenal catecholamine synthesis, patterns of expression which were not present in ASP-exposed mice with developmental NMDAR antagonism.


Asunto(s)
2-Amino-5-fosfonovalerato/análogos & derivados , Aspartame/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , 2-Amino-5-fosfonovalerato/química , 2-Amino-5-fosfonovalerato/farmacología , Animales , Aspartame/farmacología , Femenino , Masculino , Ratones
12.
Life Sci ; 212: 275-284, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308181

RESUMEN

AIMS: Hypoxia-induced adipokine release has been attributed mainly to HIF-1α. Here we investigate the role of intracellular calcium and NF-kB in the hypoxia-dependent release of leptin, VEGF, IL-6 and the hypoxia-induced inhibition of adiponectin release in human adipocytes. MAIN METHODS: We used intracellular calcium imaging to compare calcium status in preadipocytes and in adipocytes. We subjected both cell types to hypoxic conditions and measured the release of adipokines induced by hypoxia in the presence and absence of HIF-1α inhibitor YC-1, NF-κB inhibitor SN50 and intracellular calcium chelator BAPTA-AM. KEY FINDINGS: We demonstrate reduced intracellular calcium oscillations and increased oxidative stress as the cells transitioned from preadipocytes to adipocytes. We show that differentiation of preadipocytes to adipocytes is associated with distinct morphological changes in the mitochondria. We also show that hypoxia-induced secretion of leptin, VEGF, IL-6 and hypoxia-induced inhibition of adiponectin secretion are independent of HIF-1α expression. The hypoxia-induced leptin, VEGF and IL-6 release are [Ca++]i dependent whereas adiponectin is NF-kB dependent. SIGNIFICANCE: Our work suggests a major role for [Ca++]i in preadipocyte differentiation to adipocytes and that changes in mitochondrial morphology in the adipocytes might underlie the reduced calcium oscillations observed in the adipocytes. It also demonstrates that multiple signaling pathways are associated with the hypoxia-induced adipokine secretion.


Asunto(s)
Adipocitos/metabolismo , Adiponectina/metabolismo , Calcio/farmacología , Hipoxia/fisiopatología , Interleucina-6/metabolismo , Leptina/metabolismo , FN-kappa B/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Diferenciación Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
13.
J Leukoc Biol ; 72(5): 995-1002, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12429722

RESUMEN

The cytokine interleukin (IL)-12 plays a bridging role between innate and adaptive immunity. Here, we demonstrate that treatment of neutrophils with IL-12 leads to a transient increase in intracellular-free calcium [Ca(+)(+)](i) levels, which is necessary for the production of reactive oxygen metabolites (ROM). This production is associated with the activation and nuclear translocation of the transcription factor nuclear factor (NF)-kappaB and is inhibited in the presence of the intracellular calcium chelator 1,2-bis(O-amminophenoxy) ethane-N,N-N',N'-tetraacetic acid-acetoxymethyl ester and the ROM production inhibitor diphenyl iodonium. We show that IL-12 causes a significant increase in total mRNA levels, which appear dependent on the generated ROM. In addition IL-12 induces the de novo synthesis and production of IL-8 and tumor necrosis factor alpha (TNF-alpha) in a calcium- and ROM-dependent manner. Our data demonstrate a direct role for IL-12 in the activation of human neutrophils and suggest a ROM-dependent interplay between IL-12-induced [Ca(+)(+)](i) transient and the release of IL-8 and TNF-alpha through NF-kappaB activation.


Asunto(s)
Interleucina-12/farmacología , Interleucina-8/biosíntesis , FN-kappa B/metabolismo , Neutrófilos/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Calcio/metabolismo , Humanos , Interleucina-12/fisiología , Interleucina-8/genética , Cinética , Neutrófilos/efectos de los fármacos , ARN Mensajero/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/genética
14.
J Leukoc Biol ; 71(3): 433-44, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11867681

RESUMEN

The accumulation of advanced glycation end products (AGEs) in the tissue and serum of subjects with diabetes has been linked to the pathogenesis of vascular complications. Because diabetes may be also complicated by increased susceptibility to recurrent infection, we investigated the effects of AGEs on human neutrophils, because their burst of activity immediately upon engagement of pathogens or other inflammatory triggers is critical to host response. We demonstrate the presence of receptor for advanced glycation end products (RAGE) at the message and protein levels. We also demonstrate that AGE albumin (but not control albumin) binds with high affinity to human neutrophils (K(d) of 3.7 +/- 0.4 nM). The binding was blocked almost completely by excess soluble RAGE, anti-RAGE antibodies, or antibodies to CML-modified albumin. AGE albumin induced a dose-dependent increase in intracellular-free calcium as well as actin polymerization. Further, AGE albumin inhibited transendothelial migration and Staphylococcus aureus-induced but not fMLP-induced production of reactive oxygen metabolite. Moreover, although AGE albumin enhanced neutrophil phagocytosis of S. aureus, it inhibited bacterial killing. We conclude that functional RAGE is present on the plasma membrane of human neutrophils and is linked to Ca(2)(+) and actin polymerization, and engagement of RAGE impairs neutrophil functions.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Neutrófilos/metabolismo , Receptores Inmunológicos/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Humanos , Activación Neutrófila , Receptor para Productos Finales de Glicación Avanzada , Albúmina Sérica/metabolismo , Albúmina Sérica Humana
15.
Int J Cardiol ; 186: 77-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814349

RESUMEN

BACKGROUND: The molecular mechanisms underlying the geometrical changes of the left ventricle during the progression to heart failure and recovery are not well defined. OBJECTIVE: Here we investigate the involvement of matrixins and cardiokines in an ovine model of pressure-induced left ventricular failure (LVF). METHODS: Fifteen sheep underwent supracoronary aortic banding with an inflatable cuff. A controlled and progressive increase of LV pressure was monitored echocardiographically. Endomyocardial biopsies were collected throughout the development of LVF and subsequent recovery after pressure unloading. RESULTS: Thirteen sheep developed LVF with a subsequent recovery. Peak left ventricular hypertrophy (LVH) and dilatation (LVD) occurred at 31.5 ± 1.6 weeks and 102.7 ± 2.2 weeks post-banding respectively, with an increase in LV internal diameter in diastole (LVIDd 5.11 ± 0.12 compared to the control 3.37 ± 0.07 cm, p<0.001), with preserved LV ejection fraction (LVEF). Reduced LVEF became evident 116.5 ± 2.7 weeks post-banding. Clinical and echocardiographic improvements were observed following deflation of the aortic banding cuff. By 138.1 ± 3.1 weeks cardiac performance recovered with restoration of LVEF. Significant changes in the expression of matrix metalloproteinases (MMP)-1, -2, -3, vascular endothelial cell growth factor (VEGF), fibroblast growth factor (FGF)-2, interferon (INF)-α-2 and soluble CD40 ligand (sCD40L) were observed throughout the progression to failure and recovery. CONCLUSIONS: We used an ovine model to study reversible LV remodelling without interruption and found significant changes in matrixin and cardiokine expression during LV progression to failure and recovery.


Asunto(s)
Citocinas/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Metaloproteinasas de la Matriz/genética , ARN/genética , Recuperación de la Función/fisiología , Remodelación Ventricular , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Immunoblotting , Metaloproteinasas de la Matriz/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Ovinos , Oveja Doméstica
16.
Nutr Metab (Lond) ; 10: 44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23783067

RESUMEN

BACKGROUND: The human diet has altered markedly during the past four decades, with the introduction of Trans hydrogenated fat, which extended the shelf-life of dietary oils and promoted a dramatic increase in elaidic acid (Trans-18.1) consumption. Food additives such as monosodium glutamate (MSG) and aspartame (ASP) were introduced to increase food palatability and reduce caloric intake. Nutrigenomics studies in small-animal models are an established platform for analyzing the interactions between various macro- and micronutrients. We therefore investigated the effects of changes in hepatic and adipose tissue gene expression induced by the food additives ASP, MSG or a combination of both additives in C57Bl/6 J mice fed a Trans fat-enriched diet. METHODS: Hepatic and adipose tissue gene expression profiles, together with body characteristics, glucose parameters, serum hormone and lipid profiles were examined in C57Bl/6 J mice consuming one of the following four dietary regimens, commencing in utero via the mother's diet: [A] Trans fat (TFA) diet; [B] MSG + TFA diet; [C] ASP + TFA diet; [D] ASP + MSG + TFA diet. RESULTS: Whilst dietary MSG significantly increased hepatic triglyceride and serum leptin levels in TFA-fed mice, the combination of ASP + MSG promoted the highest increase in visceral adipose tissue deposition, serum free fatty acids, fasting blood glucose, HOMA-IR, total cholesterol and TNFα levels. Microarray analysis of significant differentially expressed genes (DEGs) showed a reduction in hepatic and adipose tissue PPARGC1a expression concomitant with changes in PPARGC1a-related functional networks including PPARα, δ and γ. We identified 73 DEGs common to both adipose and liver which were upregulated by ASP + MSG in Trans fat-fed mice; and an additional 51 common DEGs which were downregulated. CONCLUSION: The combination of ASP and MSG may significantly alter adiposity, glucose homeostasis, hepatic and adipose tissue gene expression in TFA-fed C57Bl/6 J mice.

17.
Genes Nutr ; 7(2): 265-80, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22144172

RESUMEN

Nonalcoholic fatty liver disease begins with a relatively benign hepatic steatosis, often associated with increased adiposity, but may progress to a more severe nonalcoholic steatohepatitis with inflammation. A subset of these patients develops progressive fibrosis and ultimately cirrhosis. Various dietary components have been shown to contribute to the development of liver disease, including fat, sugars, and neonatal treatment with high doses of monosodium glutamate (MSG). However, rodent models of progressive disease have been disappointing, and alternative animal models of diet-induced liver disease would be desirable, particularly if they contribute to our knowledge of changes in gene expression as a result of dietary manipulation. The domestic cat has previously been shown to be an appropriate model for examining metabolic changes-associated human diseases such as diabetes. Our aim was therefore to compare changes in hepatic gene expression induced by dietary MSG, with that of a diet containing Trans-fat and high fructose corn syrup (HFCS), using a feline model. MSG treatment increased adiposity and promoted hepatic steatosis compared to control (P < 0.05). Exposure to Trans-fat and HFCS promoted hepatic fibrosis and markers of liver dysfunction. Affymetrix microarray analysis of hepatic gene expression showed that dietary MSG promoted the expression of genes involved in cholesterol and steroid metabolism. Conversely, Trans-fat and HFCS feeding promoted the expression of genes involved in lipolysis, glycolysis, liver damage/regeneration, and fibrosis. Our feline model examining gene-diet interactions (nutrigenomics) demonstrates how dietary MSG, Trans-fat, and HFCS may contribute to the development of hepatic steatosis.

18.
PLoS One ; 7(4): e31570, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509243

RESUMEN

Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.


Asunto(s)
Aspartame/efectos adversos , Cognición/efectos de los fármacos , Resistencia a la Insulina , Caracteres Sexuales , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Cognición/fisiología , Relación Dosis-Respuesta a Droga , Ayuno/sangre , Ayuno/fisiología , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
19.
Physiol Behav ; 99(3): 334-42, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19945473

RESUMEN

AIMS: Recent evidence suggests that intake of excessive dietary fat, particularly saturated fat and trans-hydrogenated oils (trans-fatty acids: TFA) can impair learning and memory. Central obesity, which can be induced by neonatal injections of monosodium Glutamate (MSG), also impairs learning and memory. To further clarify the effects of dietary fat and MSG, we treated C57BL/6J mice with either a TFA-enriched diet, dietary MSG, or a combination of both and examined serum lipid profile and spatial memory compared to mice fed standard chow. Spatial learning was assessed at 6, 16 and 32 weeks of age in a Morris Water Maze (MWM). The subjects were given four days of training to find a hidden platform and a fifth day of reversal learning, in which the platform was moved to a new location. RESULTS: The TFA+MSG combination caused a central adiposity that was accompanied by impairment in locating the hidden platform in the MWM. Females in the TFA+MSG group showed a greater impairment compared to the other diet groups, and also showed elevated levels of fasting serum LDL-C and T-CHOL:HDL-C ratio, together with the lowest levels of HDL-C. Similarly, males in the TFA+MSG diet group were less successful than control mice at locating the hidden platform and had the highest level of abdominal adiposity and elevated levels of fasting serum LDL-C. CONCLUSION: Dietary trans-fat combined with MSG increased central adiposity, promoted dyslipidemia and impaired spatial learning.


Asunto(s)
Grasas de la Dieta/efectos adversos , Dislipidemias/inducido químicamente , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Glutamato de Sodio/efectos adversos , Ácidos Grasos trans/efectos adversos , Adiposidad , Animales , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Dislipidemias/psicología , Ingestión de Alimentos/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales , Glutamato de Sodio/farmacología , Ácidos Grasos trans/farmacología
20.
Obesity (Silver Spring) ; 18(6): 1122-34, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20111022

RESUMEN

It has previously been shown that patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in both hepatic and adipose tissue metabolism, and the dietary factors that contribute to the pathogenesis of NAFLD are likely to be multifactorial. Using C57BL/6J mice, we examined whether chronic exposure to low-dose dietary monosodium glutamate (MSG), high-fructose corn syrup (HFCS), or a combination of the two, vs. control would affect metabolism and hepatic and visceral fat gene expression in adult male progeny. A maternal diet containing 20% HFCS and/or dietary MSG (97.2 +/- 6.3 mg/kg body weight (bw), provided in the drinking water) was offered ad libitum from 3 weeks before mating, and continued throughout gestation and weaning until the progeny reached 32 weeks of age. Liver and abdominal fat gene expression was compared with control animals fed isocaloric standard chow under identical conditions. HFCS induced hepatic steatosis and increased the expression of genes involved in carbohydrate and lipid metabolism. Conversely, dietary MSG elevated serum free fatty acids (FFAs), triglycerides (TGs), high-density lipoprotein-cholesterol (HDL-C), and insulin, together with the expression of hepatic genes involved in lipid metabolism and bile synthesis. The HFCS+MSG combination elevated hepatic TGs, serum FFAs, and TG levels. In visceral white adipose tissue, both MSG and HFCS diets increased the expression of transcription factor Srebf2 and decreased expression of Ppargc1a, while downregulating the expression of mitochondrial respiratory chain components. MSG increased the expression of several genes implicated in adipocytes differentiation. We hypothesize that HFCS may promote hepatic steatosis, whereas dietary MSG induces dyslipidemia and markers of insulin resistance.


Asunto(s)
Hígado Graso/inducido químicamente , Fructosa , Expresión Génica/efectos de los fármacos , Grasa Intraabdominal/efectos de los fármacos , Hígado/efectos de los fármacos , Glutamato de Sodio/farmacología , Animales , Dieta , Dislipidemias/inducido químicamente , Dislipidemias/genética , Dislipidemias/metabolismo , Hígado Graso/sangre , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Perfilación de la Expresión Génica , Hormonas/sangre , Hormonas/metabolismo , Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lípidos/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Glutamato de Sodio/efectos adversos , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA