Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591163

RESUMEN

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Simulación del Acoplamiento Molecular , Cicatrización de Heridas/genética , Mutación , Metilación
2.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 214-222, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300666

RESUMEN

The antioxidant and anti-inflammatory properties of an aqueous natural extract obtained from Rosa sempervirens leaves were assessed. The ability of the extract to scavenge DPPH, •OH, and H2O2 radicals, chelate ferrous ions, reduce ferric ions, and protect ß-carotene-linoleic acid in emulsion from peroxidation was investigated in vitro. Furthermore, the anti-inflammatory activity of the extract was evaluated by measuring the stability of the membrane of human red blood cells against different hypotonic concentrations of NaCl and heat, as well as by inhibiting the denaturation of albumin. A high total phenolic content (278.38± 11.07 mg GAE/g) and flavonoid content (34.22± 0.12 mg QE /g) were found in the extract. The extract exhibited significant scavenging activity of DPPH (IC50 6.201 ± 0.126 µg/ ml), •OH (IC50 = 894.57 ± 21.18 µg/ml), and H2O2 (IC50= 107±09.58 µg/ml) radicals, and good antioxidant activity by chelating ferrous ions (IC50 = 2499.086 ± 28.267µg/ml), reducing ferric ions (IC50=141.33±2.34 µg/ml), exhibiting total antioxidant capacity (IC50 465.65 ± 9.71 µg/ml), and protecting ß-carotene-linoleic acid against peroxidation (I% = 90.05 ± 1.65% at 1000µg/ml). R. sempervirens displayed anti-inflammatory activity in aqueous extract by inhibiting heat-induced albumin denaturation and stabilizing the membrane of human red blood cells. It was suggested from the results that R. sempervirens aqueous extract could help prevent oxidative and inflammatory processes due to its good antioxidant and anti-inflammatory properties.


Asunto(s)
Antioxidantes , Rosa , Humanos , Antioxidantes/química , Peróxido de Hidrógeno/química , Ácido Linoleico , beta Caroteno/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Antiinflamatorios/farmacología
3.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 198-206, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300667

RESUMEN

Klebsiella pneumoniae producing extended-spectrum ß-lactamases (ESBL) continues to pose huge therapeutic challenges in the treatment of infections, primarily urinary infections, due to its multidrug resistance to antibiotics. Therefore, there is a need for research on this topic to investigate ways to reduce the spread of antibiotic resistance, identify novel therapeutic approaches to treat these infections and gain a better understanding of the mechanisms of resistance. In this context, this study aimed to analyze the chemical composition of essential oils (EOs) of Thymus algeriensis, Syzygium aromaticum, and Eucalyptus globulus and assess their activity against K. pneumoniae ESBL strains, as well as the interaction type between these EOs and antibiotics used for the treatment of K. pneumoniae ESBL infections. The composition of the EOs was determined by gas chromatography-mass spectrometry (GC-MS). The activity of EOs was tested using the disc diffusion and liquid microdilution methods. The type of interaction between EOs and antibiotics was studied using the agar disk diffusion and chessboard methods. The analysis of the EO of T. algeriensis showed that the main compounds were thymol (23.14%), linalool (18.44%), and p-cymene (16.17%). The main constituents of EO of E. globulus were eucalyptol (54.29%), α-pinene (17.32%), aromadendrene (7.02%), and pinocarveol (6.32%). As for the EO of S. aromaticum, the major constituents were eugenol (80.46%) and eugenol acetate (16.23%). Results of the activity tests showed that all three EOs were active against the tested strains, with inhibition diameters ranging from 7.39±0.44mm to 32.4±1.05mm and minimum inhibitory concentrations (MICs) varying from 2 to 441.5±5.66 mg/ml. A synergistic interaction was obtained between amoxicillin-clavulanic acid and T. algeriensis EO against two strains of K. pneumoniae ESBL. These results demonstrate the potential of our EOs to inhibit multi-resistant pathogenic ESBL strains, as well as their synergistic interaction with antibiotics used in therapy, which could be an alternative to the use of antibiotics alone in treatment to fight against these multi-resistant pathogenic bacteria.


Asunto(s)
Antibacterianos , Aceites Volátiles , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Klebsiella pneumoniae , Eugenol , Timol , Bacterias , Pruebas de Sensibilidad Microbiana
4.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 217-224, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158662

RESUMEN

Gastric cancer (GC) is a serious public health issue due to its frequency and severity. It is, for both sexes, one of the most common causes of cancer-related death and is a major contributor to the global burden of disease. Recent data show that Epstein-Barr virus (EBV) has been detected in different histopathological subtypes of gastric carcinoma and that EBV-associated gastric carcinoma (EBVaGC) represents about 10% of all cases. Moreover, the LMP1 protein characterizing the malignant transformation of cells in several cancer models seems to be very rarely expressed in this type of cancer. This study aimed to characterize EBVaGC in our population by detecting LMP1 in gastric carcinomas in about 30 selected patients. The results showed that in our population, nuclear staining predominates, showing that the antrum remains the most sampled site both for these pathologies and for LMP1 positivity (nuclear staining). In general, the LMP1 marking was negative for 22.58%, positive with a nuclear predominance at 64.52%, nuclear and cytoplasmic at 12.90%, and no positive marking for the cytoplasm. Results were not like the different studies on the expression of this oncogenic protein without EBVsCG, probably finding an explanation in the fact that our country is among the endemic regions for this herpes virus. In conclusion, the rate of LMP1 expression among gastric carcinomas does not seem similar to that observed in other countries. This study characterizing EBVaGC in Tizi-Ouzou, Algeria, reinforces the need for further studies to clarify the role of EBV (LMP1) and to explore its potential value as a predictive biomarker for the development of this type of cancer pathology.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Masculino , Femenino , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Neoplasias Gástricas/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/epidemiología , Infecciones por Virus de Epstein-Barr/patología , Coloración y Etiquetado , Carcinoma/patología
5.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 241-249, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158663

RESUMEN

We are looking into viral components that may contribute to breast cancer in order to find possible therapeutic targets. The Epstein-Barr virus (EBV), which has been found to cause nasopharyngeal carcinoma and Burkitt lymphoma, is thought to play a role in breast cancer. Our series' patients had a median age of 49, with nearly half being under the age of 49. T2 tumors (two to five centimeters in size) make up the vast majority of our collection (60%). Six percent of our patients showed lymph node involvement, with roughly the same number in the N1 and N2 stages (41.17% each). Only 17.64% of people are at the N3 stage. SBR II tumors were the most common (90%). Only 20% of patients have HER2 overexpression, whereas 73.33% have ER expression. EBV was found in 23.33% of breast carcinomas (7 cases/30) after oncoprotein LMP1 expression, but normal surrounding tissues tested negative. We discovered that overexpression of the HER2 protein is inversely related to the two HRs' expression. They have no relationship with EBV infection and, consequently, LMP1 expression. LMP1 expression was not shown to be linked with patient age, tumor grade, tumor size, or lymph node invasion.


Asunto(s)
Neoplasias de la Mama , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Femenino , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/patología , Neoplasias de la Mama/patología , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología
6.
Mar Drugs ; 21(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888471

RESUMEN

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.


Asunto(s)
Actinobacteria , Antiinfecciosos , Nanopartículas del Metal , Actinobacteria/química , Antibacterianos/química , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana
7.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894631

RESUMEN

Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of -7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Fitoquímicos/química
8.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985610

RESUMEN

Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2-95.5%). The main components were 1,8-cineole (65.6-86.1%), α-terpinyl acetate (2.5-7.6%), o-cymene (3.3-7.5%), and α-terpineol (3.3-3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.


Asunto(s)
Eucalyptus , Repelentes de Insectos , Myrtaceae , Aceites Volátiles , Aceites Volátiles/química , Eucalyptus/química , Myrtaceae/química , Hojas de la Planta/química , Repelentes de Insectos/química , Antibacterianos/química , Aceites de Plantas/química
9.
Int Wound J ; 21(3): e14506, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010070

RESUMEN

The incidence of squamous cell carcinoma (SCC) is on the rise, making it a significant global health concern. Environmental risk factors are crucial to the development of SCC. This study sought to examine comprehensively the impact of these factors on the onset of SCC. We conducted a cross-sectional study involving 480 participants at Beijing tertiary care hospital. Utilizing structured questionnaires, data on demographics, environmental exposures, medical history and clinical characteristics were collected. The cohort was composed of 272 men (56.67%) and 208 women (43.33%). The majority (44.38%) were between ages of 41 and 60, and Type III skin predominated (34.79%). Most of the participants belonged to the middle socioeconomic class (60.83%). 'Vegetarian' dietary habits (46.67%) were prevalent, as was the 'Sedentary' lifestyle (49.79%). Regarding environmental exposures, moderate sun exposure of 3 to 5 h per day (54.58%) and UV protective eyewear (30.83%) were prevalent. The majority (69.58%) of respondents indicated 'Never' exposure to carcinogens. A variety of wound characteristics were observed, with 'non-smokers' (64.17%) dominating. Most SCC lesions were located on the extremities (40.21%), lasted less than 6 months (44.38%) and measured 1-3 cm (39.79%). The majority (54.58%) did not have a history of cutaneous injuries. Our research uncovered substantial relationships between SCC and numerous environmental variables, gender, Fitzpatrick skin type, occupation, duration of sun exposure, exposure to carcinogens, dietary practices, history of skin wounds, wound location, duration, size and depth were significantly associated with the onset of SCC. These results highlighted the complexity of SCC aetiology and need for individualized prevention and treatment strategies.

10.
Saudi Pharm J ; 31(8): 101671, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37484541

RESUMEN

Background & Objectives: This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods: Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results: Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion: The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.

11.
BMC Vet Res ; 18(1): 72, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180858

RESUMEN

BACKGROUND: Bacterial ghosts are the evacuated bacterial cellular membranes from most of the genetic and protein contents which preserved their surface characters. Recently, bacterial ghosts exploited for different biomedical applications, for instance, vaccination. The purpose of this study is to measure the immunogenic protective response of bacterial ghosts of Salmonella Typhimurium in animals and to allow future testing this response in humans. The immunologic response was qualitatively, quantitatively, and functionally measured. We have measured the humoral and cellular immune responses, such as immunoglobulins elevation (IgG), increased granulocytes, serum antibacterial activity, clearance of virulence in feces and liver, and the survival rate. RESULTS: The bacterial ghosts' vaccine was able to protect 100% of subcutaneously vaccinated rats and 75% of adjuvant subcutaneously vaccinated rats. The lowest survival rate was in the orally vaccinated group (25%). The maximum level of serum IgG titers, as well as serum and feces bactericidal activity (100% eradication), was exhibited in the subcutaneously vaccinated group with adjuvant vaccines followed by the subcutaneously vaccinated one. Additionally, the highest granulocytes' number was observed in the adjuvant vaccine subcutaneously immunized group. The bacterial load in liver homogenate was eliminated in the subcutaneously vaccinated rats after the virulence challenge. CONCLUSIONS: The bacterial ghosts of Salmonella enterica serovar Typhimurium that prepared by Tween 80 Protocol showed an effective vaccine candidate that protected animals, eliminated the virulence in feces and liver. These findings show that chemically induced bacterial ghosts of Salmonella Typhimurium can be a promising vaccine.


Asunto(s)
Enfermedades de los Roedores , Salmonelosis Animal , Vacunas contra la Salmonella , Animales , Anticuerpos Antibacterianos , Formación de Anticuerpos , Vacunas Bacterianas , Ratas , Salmonelosis Animal/prevención & control , Salmonella typhimurium , Vacunas Atenuadas
12.
Molecules ; 27(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163997

RESUMEN

Conjunctivitis and endogenous bacterial endophthalmitis mostly occurred after ophthalmic surgery. Therefore, the present study aimed to maximize the ocular delivery of ciprofloxacin (CPX) using colloidal lipid-based carrier to control the post-surgical infection. In this study, CPX was formulated as ophthalmic liposomal drops. Two different phospholipids in different ratios were utilized, including phosphatidylcholine (PC) and dimyrestoyl phosphatidylcholine (DMPC). The physiochemical properties of the prepared ophthalmic liposomes were evaluated in terms of particle size, entrapment efficiency, polydispersity index, zeta potential, and cumulative CPX in-vitro release. In addition, the effect of sonication time on particle size and entrapment efficiency of CPX ophthalmic drops was also evaluated. The results revealed that most of the prepared formulations showed particle size in nanometer size range (460-1047 nm) and entrapment efficiency ranging from 36.4-44.7%. The antibacterial activity and minimum inhibitory concentration (MIC) were investigated. Ex vivo antimicrobial effect of promising formulations was carried out against the most common causes of endophthalmitis microorganisms. The pharmacokinetics of the prepared ophthalmic drops were tested in rabbit aqueous humor and compared with commercial CPX ophthalmic drops (Ciloxan®). Observed bacterial suppression was detected in rabbit's eyes conjunctivitis with an optimized formulation A3 compared with the commercial ophthalmic drops. CPX concentration in the aqueous humor was above MIC against tested bacterial strains. The in vivo data revealed that the tested CPX drops showed superiority over the commercial ones with respect to peak aqueous humor concentration, time to reach peak aqueous humor concentration, elimination rate constant, half-life, and relative bioavailability. Based on these results, it was concluded that the prepared ophthalmic formulations significantly enhanced CPX bioavailability compared with the commercial one.


Asunto(s)
Antibacterianos/farmacología , Humor Acuoso/efectos de los fármacos , Ciprofloxacina/farmacología , Ojo/efectos de los fármacos , Lípidos/química , Staphylococcus aureus/efectos de los fármacos , Infección de la Herida Quirúrgica/tratamiento farmacológico , Animales , Manejo de la Enfermedad , Portadores de Fármacos/química , Masculino , Conejos , Infección de la Herida Quirúrgica/microbiología
13.
Can J Microbiol ; 67(12): 894-901, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731576

RESUMEN

This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½-1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and » MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Biopelículas , Cefepima , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
14.
Drug Dev Ind Pharm ; 47(12): 1935-1942, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35537065

RESUMEN

Surfactant-stabilized mucoadhesive nanogels (NGs) for vaginal delivery of fluconazole (FLZ) were studied and evaluated in this work. FLZ-NG formulations were prepared using two different types of mucoadhesive polymers, Carbopol 934 (Ca934) and Pluronic F-127 (PF127). A rheology study revealed a non-Newtonian pseudoplastic flow behavior (shear thinning) in the prepared NGs. The viscosity of Ca934 NG (0.47 Pa s) was much lower compared to the PF127 NG (6.10 Pa s). The rheology study results correlated well with the in vitro FLZ release profile from the NG formulations. A pH study (pH = 3.90-4.90) revealed that the formulations were physiologically suitable for vaginal application, to avoid the irritation of the vaginal mucosa. Finally, in vitro and in vivo antimicrobial tests were performed. FLZ incorporated into the Ca934 gel had the strongest antimicrobial effect, with a mean inhibition zone of 24 ± 1.6 mm. Based on these results, it was concluded that the mucoadhesive NG incorporating FLZ resulted in a sustained release and enhanced antimicrobial effect, which would enhance and prolong the therapeutic effects of vaginally delivered FLZ.


Asunto(s)
Fluconazol , Tensoactivos , Antifúngicos/farmacología , Parto Obstétrico , Excipientes , Femenino , Fluconazol/farmacología , Geles , Humanos , Nanogeles , Poloxámero , Embarazo
15.
Molecules ; 26(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34443336

RESUMEN

We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was investigated and all formulations showed antiacne potential in vitro. Ex vivo permeation studies indicated significant improvement in drug permeations and steady state flux of all NEO-NEs compared to the neat NEO (p < 0.05). On the basis of the studied pharmaceutical parameters, enhanced ex vivo skin permeation, and marked effect on acne pathogens, formulation NEO-NE4 was found to be the best (oil (NEO; 10% v/v); Kolliphor EL (9.25% v/v), Carbitol (27.75% v/v), and water (53% v/v)). Concisely, the in vitro and ex vivo results revealed that nanoemulsification improved the delivery as well as bioactivities of NEO significantly.


Asunto(s)
Portadores de Fármacos/química , Melaleuca/química , Nanoestructuras/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Emulsiones , Aceites Volátiles/metabolismo , Permeabilidad , Piel/metabolismo , Staphylococcus epidermidis/efectos de los fármacos
16.
Drug Dev Ind Pharm ; 46(10): 1716-1725, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32893682

RESUMEN

The use of bacterial ghosts (BGs) for drug delivery is an extremely fascinating perspective especially with the inherited efficient target-ability to specialized tissues. Trafficking of drug molecules across the outer membrane of Gram-negative bacteria are important to be understood for both loading (influx) and drug release (efflux). In this study, Escherichia coli (E. coli) BGs were prepared using modified protocol sponge-like reduced protocol (SLRP) which was used for loading of doxorubicin (DOX). First time in the literature, different possible factors affecting DOX loading from BGs were examined in this study. These factors including drug concentration, temperature, pH gradient, incubation time and tonicity, are proposed to effect on drug loading into E. coli BGs. Results of optimum effect from accompanied factors were found to be 10 mg/mL as DOX concentration at pH 6 with tonicity of 0.7% incubated overnight at 4 °C. After gather all factors, the amount of DOX loaded inside the BGs was recorded as 37.58%. The in vitro release studies of DOX loaded BGs over time showed a burst initial release rate of 26.75% at the first 12 h followed by a period of sustained release lasting for 16 days to give maximum release rate of 58.04%. Remarkably, DOX loaded in BG showed more apoptosis (55%) than control and DOX solution. Overall, the results indicated the presence of some important factors to be controlled when loading drugs into BGs. Also, data showed the future possibility of utilizing BGs to deliver DOX to colon cancer cells.


Asunto(s)
Portadores de Fármacos , Escherichia coli , Membrana Celular/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno
17.
AAPS PharmSciTech ; 21(5): 168, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514657

RESUMEN

Bacteriosomes are a member of cell-derived vesicles that are proposed as promising tools in diagnosis, therapy, and drug delivery. These vesicles could be derived from a virus, bacterial cells, and animal cells. Biotechnology techniques were used in bioengineering of cell-derived vesicles in vitro, and in vivo. Bacterial vesicles such as bacterial cells, bacterial ghost, or bacteriosomes are vesicular structures derived from bacteria produced by manipulation of bacterial cells by chemical agents or gene-mediated lysis. Subsequently, bacterial vesicles (bacteriosomes) are non-living, non-denatured bacterial cell envelopes free of the cytoplasm and genetic materials. Gram-negative and Gram-positive bacteria are exploited in the production of bacteriosomes. Bacteriosomes have instinct organs, tissues, cells, as well as subcellular tropism. Moreover, bacteriosomes might be used as immunotherapy and/or drug delivery shuttles. They could act as cargoes for the delivery of small drugs, large therapeutics, and nanoparticles to the specific location. Furthermore, bacteriosomes have nature endosomal escaping ability, hence they could traffic different bio-membranes by endocytosis mechanisms. Therefore, bacterial-derived vesicles could be used in therapy and development of an innovative drug delivery systems. Consequently, utilizing bacteriosomes as drug cargoes enhances the delivery and efficacy of administered therapeutic agents. This review highlighted bacteriosomes in terms of source, engineering, characterization, applications, and limitations.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos , Animales , Bacterias , Micropartículas Derivadas de Células , Humanos
18.
Saudi Pharm J ; 28(10): 1253-1262, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33132719

RESUMEN

Cell- based targeted delivery is recently gain attention as a promising platform for delivery of anticancer drug in selective and efficient manner. As a new biotechnology platform, bacterial ghosts (BGs) have novel biomedical application as targeted drug delivery system (TDDS). In the current work, Salmonellas' BGs was utilized for the first time as hepatocellular cancer (HCC) in-vitro targeted delivery system. Successful BGs loading and accurate analysis of doxorubicin (DOX) were necessary steps for testing the applicability of DOX loaded BGs in targeting the liver cancer cells. Loading capacity was maximized to reach 27.5 µg/mg (27.5% encapsulation efficiency), by incubation of 10 mg BGs with 1 mg DOX at pH 9 in constant temperature (25 °C) for 10 min. In-vitro release study of DOX loaded BGs showed a sustained release (182 h) obeying Higuchi sustained kinetic release model. The death rate (tested by MTT assay) of HepG2 reached to 64.5% by using of 4 µg/ml, while it was about 51% using the same concentration of the free DOX (P value < 0.0001 One-way ANOVA analysis). The proliferative inhibitory concentration (IC50) of the DOX combined formula was 1.328 µg/ml that was about one third of the IC50 of the free DOX (3.374 µg/ml). Apoptosis analysis (tested by flow-cytometry) showed more accumulation in early apoptosis (8.3%) and late apoptosis/necrosis (91%) by applying 1 µg/ml BGs combined DOX, while 1 µg/ml free DOX showed 33.4% of cells in early apoptosis and 39.3% in late apoptosis/necrosis, (P value˃ 0.05: one-way ANOVA). In conclusion, DOX loaded Salmonellas' BGs are successfully prepared and tested in vivo with promising potential as hepatocellular cancer (HCC) targeted delivery system.

19.
AAPS PharmSciTech ; 20(2): 48, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30617674

RESUMEN

Bacterial ghosts (BGs) are non-deformed bacterial cell envelopes that possess undamaged external configurations for precise attachment to different cells of the human body. The Escherichia coli BGs were successfully produced using a modified sponge-like reduced protocol and characterized by SEM. Four different concentrations of 5-fluorouracil (5-FU) were used to study the impact on the "ghosts" cell wall. 5-FU was then loaded into the BGs and the loading capacity (LC %) and entrapment efficiency (EE %) were determined and were found to be 38.3 ± 0.8 and 76.6 ± 0.8, respectively. The in vitro release studies were conducted in dialysis bags over a time period of 16 days and the accumulative 5-FU released (%) was calculated. Overall, 69.2% of the ghost-associated 5-FU was released from the BGs and release from the E. coli ghosts is governed by non-Fickian diffusion. The Caco-2 cell line was used to investigate the cytotoxicity of 5-FU-loaded BGs.


Asunto(s)
Antimetabolitos Antineoplásicos/metabolismo , Neoplasias Colorrectales/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Escherichia coli/metabolismo , Fluorouracilo/metabolismo , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Células CACO-2 , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Escherichia coli/química , Fluorouracilo/administración & dosificación , Fluorouracilo/química , Humanos , Pruebas de Sensibilidad Microbiana/métodos
20.
Saudi Pharm J ; 26(2): 232-237, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30166921

RESUMEN

Bacterial ghosts (BGs) can be prepared by both genetic and chemical means. Genetic method include using lysis gene E. Chemical method include incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations (MIC or MGC). The aim of this study is to prepare the BGs with a new protocol via exposing the bacterial cells to tween 80 for an extended period of time followed by sudden reduction of the surrounding pH. Salmonella enterica serovar typhimurium ATCC 13311 was used for this purpose. The cells were incubated in 7% v/v tween 80 solution in Muller-Hinton broth for 24 h at 37 °C then pH was decreased to 3.6 by adding lactic acid for one hour. The bacterial pellets were separated by high speed centrifugation, and then washed three times by half normal saline solution. High quality BGs were visualized by scanning electron microscopy (SEM) revealing punctured cells with intact outer shells and at least one intramembranous tunnel. The absence of vital cells was confirmed by subculturing. The release of respective amounts of proteins and DNA is another evidence of ghost's production. In addition, the integrity of cells was proved by visualization of Gram-stained cells using light microscopy. In conclusion, this new protocol is simple, economic and feasible for BGs preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA