Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7887): 133-137, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789872

RESUMEN

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Deltacoronavirus/aislamiento & purificación , Porcinos/virología , Zoonosis Virales/epidemiología , Zoonosis Virales/virología , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Niño , Chlorocebus aethiops , Secuencia Conservada , Infecciones por Coronavirus/sangre , Deltacoronavirus/clasificación , Deltacoronavirus/genética , Deltacoronavirus/patogenicidad , Femenino , Haití/epidemiología , Humanos , Masculino , Modelos Moleculares , Mutación , Filogenia , Células Vero , Zoonosis Virales/sangre
2.
PLoS Comput Biol ; 20(4): e1011351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598563

RESUMEN

In the midst of an outbreak or sustained epidemic, reliable prediction of transmission risks and patterns of spread is critical to inform public health programs. Projections of transmission growth or decline among specific risk groups can aid in optimizing interventions, particularly when resources are limited. Phylogenetic trees have been widely used in the detection of transmission chains and high-risk populations. Moreover, tree topology and the incorporation of population parameters (phylodynamics) can be useful in reconstructing the evolutionary dynamics of an epidemic across space and time among individuals. We now demonstrate the utility of phylodynamic trees for transmission modeling and forecasting, developing a phylogeny-based deep learning system, referred to as DeepDynaForecast. Our approach leverages a primal-dual graph learning structure with shortcut multi-layer aggregation, which is suited for the early identification and prediction of transmission dynamics in emerging high-risk groups. We demonstrate the accuracy of DeepDynaForecast using simulated outbreak data and the utility of the learned model using empirical, large-scale data from the human immunodeficiency virus epidemic in Florida between 2012 and 2020. Our framework is available as open-source software (MIT license) at github.com/lab-smile/DeepDynaForcast.


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Epidemias , Filogenia , Humanos , Epidemias/estadística & datos numéricos , Biología Computacional/métodos , Infecciones por VIH/transmisión , Infecciones por VIH/epidemiología , Programas Informáticos , Florida/epidemiología , Algoritmos , Simulación por Computador , Brotes de Enfermedades/estadística & datos numéricos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38949619

RESUMEN

The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds.

4.
J Transl Med ; 22(1): 269, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475767

RESUMEN

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Cisplatino , Proteína p53 Supresora de Tumor , Fluorouracilo , Bacterias
5.
BMC Bioinformatics ; 24(1): 312, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587443

RESUMEN

BACKGROUND: Accurate case report data are essential to understand arbovirus dynamics, including spread and evolution of arboviruses such as Zika, dengue and chikungunya viruses. Giving the multi-country nature of arbovirus epidemics in the Americas, these data are not often accessible or are reported at different time scales (weekly, monthly) from different sources. RESULTS: We developed a publicly available and user-friendly database for arboviral case data in the Americas: ARCA. ARCA is a relational database that is hosted on the ARCA website. Users can interact with the database through the website by submitting queries through the website, which generates displays results and allows users to download these results in different, convenient file formats. Users can choose to view arboviral case data through a table which containscontaining the number of cases for a particular week, a plot, or through a map. CONCLUSION: Our ARCA database is a useful tool for arboviral epidemiology research allowing for complex queries, data visualization, integration, and formatting.


Asunto(s)
Arbovirus , Epidemias , Infección por el Virus Zika , Virus Zika , Humanos , Visualización de Datos , Bases de Datos Factuales , Américas
6.
Clin Infect Dis ; 76(3): e491-e494, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36029095

RESUMEN

We screened 65 longitudinally collected nasal swab samples from 31 children aged 0-16 years who were positive for severe acute respiratory syndrome coronavirus 2 Omicron BA.1. By day 7 after onset of symptoms, 48% of children remained positive by rapid antigen test. In a sample subset, we found 100% correlation between antigen test results and virus culture.


Asunto(s)
COVID-19 , Humanos , Niño , COVID-19/diagnóstico , SARS-CoV-2 , Pruebas Inmunológicas
7.
Emerg Infect Dis ; 29(10): 2072-2082, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735743

RESUMEN

The 2010 cholera epidemic in Haiti was thought to have ended in 2019, and the Prime Minister of Haiti declared the country cholera-free in February 2022. On September 25, 2022, cholera cases were again identified in Port-au-Prince. We compared genomic data from 42 clinical Vibrio cholerae strains from 2022 with data from 327 other strains from Haiti and 1,824 strains collected worldwide. The 2022 isolates were homogeneous and closely related to clinical and environmental strains circulating in Haiti during 2012-2019. Bayesian hypothesis testing indicated that the 2022 clinical isolates shared their most recent common ancestor with an environmental lineage circulating in Haiti in July 2018. Our findings strongly suggest that toxigenic V. cholerae O1 can persist for years in aquatic environmental reservoirs and ignite new outbreaks. These results highlight the urgent need for improved public health infrastructure and possible periodic vaccination campaigns to maintain population immunity against V. cholerae.


Asunto(s)
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Haití/epidemiología , Teorema de Bayes , Cólera/epidemiología , Brotes de Enfermedades
8.
Emerg Infect Dis ; 29(10): 2141-2144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735754

RESUMEN

Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.


Asunto(s)
Cólera , Vibrio mimicus , Humanos , Cólera/epidemiología , Florida/epidemiología , Vibrio mimicus/genética , Brotes de Enfermedades , Alimentos Marinos
9.
Bioinformatics ; 38(3): 856-860, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34672334

RESUMEN

SUMMARY: TARDiS is a novel phylogenetic tool for optimal genetic subsampling. It optimizes both genetic diversity and temporal distribution through a genetic algorithm. AVAILABILITY AND IMPLEMENTATION: TARDiS, along with example datasets and a user manual, is available at https://github.com/smarini/tardis-phylogenetics.


Asunto(s)
Genoma Viral , Programas Informáticos , Filogenia , Variación Genética
10.
Proc Natl Acad Sci U S A ; 117(14): 7897-7904, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229557

RESUMEN

The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.


Asunto(s)
Cólera/microbiología , Ecosistema , Filogenia , Vibrio cholerae O1/clasificación , Asia/epidemiología , Cólera/epidemiología , Cólera/genética , Cólera/patología , Brotes de Enfermedades , Genoma Bacteriano/genética , Haití/epidemiología , Humanos , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidad , Microbiología del Agua
11.
Proc Natl Acad Sci U S A ; 117(18): 9981-9990, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32300019

RESUMEN

HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses constructed with individual envelope genes that were obtained from plasma of six individuals undergoing analytic treatment interruption (ATI). M-tropic viruses could also be enriched from post-ATI plasma using macrophage-specific (CD14) but not CD4+ T cell-specific (CD3) antibodies, suggesting that M-tropic viruses had a macrophage origin. Molecular clock analysis indicated that the establishment of M-tropic HIV-1 variants predated ATI. Collectively, these data suggest that macrophages are a viral reservoir in HIV-1-infected individuals on effective ART and that M-tropic variants can appear in rebounding viremia when treatment is interrupted. These findings have implications for the design of curative strategies for HIV-1.


Asunto(s)
Relojes Biológicos/genética , Infecciones por VIH/genética , VIH-1/genética , Viremia/genética , Antirretrovirales/farmacología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/patología , Infecciones por VIH/patología , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/patogenicidad , Humanos , Macrófagos/inmunología , Macrófagos/patología , Provirus/genética , Carga Viral/genética , Viremia/patología , Viremia/virología
12.
Infect Immun ; 90(8): e0016122, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35862704

RESUMEN

Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Enfermedad Aguda , Animales , Anticuerpos Monoclonales/metabolismo , Cólera/diagnóstico , Cólera/epidemiología , Diarrea , Heces , Humanos , Ratones
13.
Clin Infect Dis ; 75(1): e1184-e1187, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34718467

RESUMEN

We isolated a novel coronavirus from a medical team member presenting with fever and malaise after travel to Haiti. The virus showed 99.4% similarity with a recombinant canine coronavirus recently identified in a pneumonia patient in Malaysia, suggesting that infection with this virus and/or recombinant variants occurs in multiple locations.


Asunto(s)
COVID-19 , Coronavirus Canino , Animales , Perros , Haití , Humanos , SARS-CoV-2/genética , Viaje
14.
Clin Infect Dis ; 75(9): 1618-1627, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-35271704

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. METHODS: Between October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. RESULTS: The majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ±â€…57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. CONCLUSIONS: Delta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Filogenia , Florida/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación
15.
Clin Infect Dis ; 74(11): 2057-2060, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34471930

RESUMEN

After an initial wave of coronavirus disease 2019 (COVID-19) in Haiti in summer 2020 (primarily lineage B.1), seropositivity for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) was ~40%. Variant P.1 (gamma) was introduced in February 2021, with an initially limited introduction followed by exponential local dissemination within this unvaccinated population with prior exposure to earlier SARS-CoV-2 lineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Haití/epidemiología , Humanos , SARS-CoV-2/genética
16.
Emerg Infect Dis ; 28(12): 2482-2490, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417939

RESUMEN

Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiología , Cólera/microbiología , Bacteriófagos/genética , República Democrática del Congo/epidemiología , Filogenia
17.
J Med Virol ; 94(7): 3192-3202, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35307848

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has raised questions regarding vaccine protection against SARS-CoV-2 infection, transmission, and ongoing virus evolution. Twenty-three mildly symptomatic "vaccination breakthrough" infections were identified as early as January 2021 in Alachua County, Florida, among individuals fully vaccinated with either the BNT162b2 (Pfizer) or the Ad26 (Janssen/J&J) vaccines. SARS-CoV-2 genomes were successfully generated for 11 of the vaccine breakthroughs, and 878 individuals in the surrounding area and were included for reference-based phylogenetic investigation. These 11 individuals were characterized by infection with VOCs, but also low-frequency variants present within the surrounding population. Low-frequency mutations were observed, which have been more recently identified as mutations of interest owing to their location within targeted immune epitopes (P812L) and association with increased replicative capacity (L18F). We present these results to posit the nature of the efficacy of vaccines in reducing symptoms as both a blessing and a curse-as vaccination becomes more widespread and self-motivated testing reduced owing to the absence of severe symptoms, we face the challenge of early recognition of novel mutations of potential concern. This case study highlights the critical need for continued testing and monitoring of infection and transmission among individuals regardless of vaccination status.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Filogenia , SARS-CoV-2/genética
18.
J Infect Dis ; 223(5): 866-875, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32644119

RESUMEN

BACKGROUND: Persons living with human immunodeficiency virus (HIV) with resistance to antiretroviral therapy are vulnerable to adverse HIV-related health outcomes and can contribute to transmission of HIV drug resistance (HIVDR) when nonvirally suppressed. The degree to which HIVDR contributes to disease burden in Florida-the US state with the highest HIV incidence- is unknown. METHODS: We explored sociodemographic, ecological, and spatiotemporal associations of HIVDR. HIV-1 sequences (n = 34 447) collected during 2012-2017 were obtained from the Florida Department of Health. HIVDR was categorized by resistance class, including resistance to nucleoside reverse-transcriptase , nonnucleoside reverse-transcriptase , protease , and integrase inhibitors. Multidrug resistance and transmitted drug resistance were also evaluated. Multivariable fixed-effects logistic regression models were fitted to associate individual- and county-level sociodemographic and ecological health indicators with HIVDR. RESULTS: The HIVDR prevalence was 19.2% (nucleoside reverse-transcriptase inhibitor resistance), 29.7% (nonnucleoside reverse-transcriptase inhibitor resistance), 6.6% (protease inhibitor resistance), 23.5% (transmitted drug resistance), 13.2% (multidrug resistance), and 8.2% (integrase strand transfer inhibitor resistance), with significant variation by Florida county. Individuals who were older, black, or acquired HIV through mother-to-child transmission had significantly higher odds of HIVDR. HIVDR was linked to counties with lower socioeconomic status, higher rates of unemployment, and poor mental health. CONCLUSIONS: Our findings indicate that HIVDR prevalence is higher in Florida than aggregate North American estimates with significant geographic and socioecological heterogeneity.


Asunto(s)
Fármacos Anti-VIH , Farmacorresistencia Viral , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/uso terapéutico , ARN Polimerasas Dirigidas por ADN , Florida/epidemiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Mutación , Nucleósidos/uso terapéutico , Estudios Retrospectivos , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Factores Sociodemográficos , Análisis Espacio-Temporal
19.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32350076

RESUMEN

While the relationship of protective human leukocyte antigen (HLA) class I alleles and HIV progression is well defined, the interaction of HLA-mediated protection and CD8 T-cell exhaustion is less well characterized. To gain insight into the influence of HLA-B*57:01 on the deterioration of CD8 T-cell responses during HIV infection in the absence of antiretroviral treatment, we compared HLA-B*57:01-restricted HIV-specific CD8 T-cell responses to responses restricted by other HLA class I alleles longitudinally after control of peak viremia. Detailed characterization of polyfunctionality, differentiation phenotypes, transcription factor, and inhibitory receptor expression revealed progression of CD8 T-cell exhaustion over the course of the infection in both patient groups. However, early effects on the phenotype of the total CD8 T-cell population were apparent only in HLA-B*57-negative patients. The HLA-B*57:01-restricted, HIV epitope-specific CD8 T-cell responses showed beneficial functional patterns and significantly lower frequencies of inhibitory receptor expression, i.e., PD-1 and coexpression of PD-1 and TIGIT, within the first year of infection. Coexpression of PD-1 and TIGIT was correlated with clinical markers of disease progression and declining percentages of the T-bethi Eomesdim CD8 T-cell population. In accordance with clinical and immunological deterioration in the HLA-B*57:01 group, the difference in PD-1 and TIGIT receptor expression did not persist to later stages of the disease.IMPORTANCE Given the synergistic nature of TIGIT and PD-1, the coexpression of those inhibitory receptors should be considered when evaluating T-cell pathogenesis, developing immunomodulatory therapies or vaccines for HIV, and when using immunotherapy or vaccination for other causes in HIV-infected patients. HIV-mediated T-cell exhaustion influences the patient´s disease progression, immune system and subsequently non-AIDS complications, and efficacy of vaccinations against other pathogens. Consequently, the possibilities of interfering with exhaustion are numerous. Expanding the use of immunomodulatory therapies to include HIV treatment depends on information about possible targets and their role in the deterioration of the immune system. Furthermore, the rise of immunotherapies against cancer and elevated cancer incidence in HIV-infected patients together increase the need for detailed knowledge of T-cell exhaustion and possible interactions. A broader approach to counteract immune exhaustion to alleviate complications and improve efficacy of other vaccines also promises to increase patients' health and quality of life.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Regulación de la Expresión Génica , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Antígenos HLA-B/metabolismo , Receptor de Muerte Celular Programada 1/biosíntesis , Receptores Inmunológicos/biosíntesis , Adulto , Linfocitos T CD8-positivos/patología , Femenino , Infecciones por VIH/patología , Humanos , Masculino , Persona de Mediana Edad
20.
J Neurovirol ; 27(1): 101-115, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33405206

RESUMEN

Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND significantly affects individuals' quality of life, as well as adherence to therapy, and, despite the increasing understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was compared among SIV-infected animals (n = 11), with or without CD8+ lymphocyte depletion, based on detectable (n = 6) or non-detectable (n = 5) presence of the virus in frontal cortex tissues. Significant enrichment in activation of monocyte and macrophage cellular pathways was found in animals with detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by real-time polymerase chain reaction. Our results shed light on involvement of PARPs in SIV infection of the brain and their role in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel therapeutic target for HIV-related neuropathology.


Asunto(s)
Trastornos del Conocimiento/virología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/virología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Animales , Trastornos del Conocimiento/metabolismo , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA