RESUMEN
Metabolic reprogramming and mitochondrial dynamics are pivotal in prostate cancer (PCa) progression and treatment resistance, making them essential targets for therapeutic intervention. In this study, we investigated the effects of the androgen receptor antagonist apalutamide (ARN) and the mitochondrial electron transport chain complex I inhibitor IACS-010759 (IACS) on the mitochondrial network architecture and dynamics in PCa cells. Treatment with ARN and/or IACS induced significant changes in mitochondrial morphology, particularly elongation, in androgen-sensitive PCa cells. Additionally, ARN and IACS modulated the mitochondrial fission and fusion processes, indicating a convergence of metabolic and androgen-signaling pathways in shaping mitochondrial function. Notably, the combination treatment with ARN and IACS resulted in increased apoptotic cell death and mitochondrial oxidative stress selectively in the androgen-sensitive PCa cells. Our findings highlight the therapeutic potential of targeting mitochondrial metabolism in prostate cancer and emphasize the need for further mechanistic understanding to optimize treatment strategies and improve patient outcomes.
Asunto(s)
Apoptosis , Complejo I de Transporte de Electrón , Mitocondrias , Neoplasias de la Próstata , Especies Reactivas de Oxígeno , Tiohidantoínas , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tiohidantoínas/farmacología , Tiohidantoínas/uso terapéutico , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéuticoRESUMEN
Spinal dysraphism, most commonly myelomeningocele, is the typical cause of a neurogenic lower urinary tract dysfunction (NLUTD) in childhood. The structural changes in the bladder wall in spinal dysraphism already occur in the fetal period and affect all bladder wall compartments. The progressive decrease in smooth muscle and the gradual increase in fibrosis in the detrusor, the impairment of the barrier function of the urothelium, and the global decrease in nerve density, lead to severe functional impairment characterized by reduced compliance and increased elastic modulus. Children present a particular challenge, as their diseases and capabilities evolve with age. An increased understanding of the signaling pathways involved in lower urinary tract development and function could also fill an important knowledge gap at the interface between basic science and clinical implications, leading to new opportunities for prenatal screening, diagnosis, and therapy. In this review, we aim to summarize the evidence on structural, functional, and molecular changes in the NLUTD bladder in children with spinal dysraphism and discuss possible strategies for improved management and for the development of new therapeutic approaches for affected children.
Asunto(s)
Defectos del Tubo Neural , Disrafia Espinal , Vejiga Urinaria Neurogénica , Embarazo , Femenino , Humanos , Niño , Vejiga Urinaria , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/terapia , UrodinámicaRESUMEN
Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal of our project was to investigate the expression of myostatin and its potential impact in SMCs derived from healthy pediatric bladders and pediatric ESLUTD patients. Human bladder tissue samples were evaluated histologically, and SMCs were isolated and characterized. The proliferation of SMCs was assessed by WST-1 assay. The expression pattern of myostatin, its pathway and the contractile phenotype of the cells were investigated at gene and protein levels by real-time PCR, flow cytometry, immunofluorescence, WES and gel contraction assay. Our results show that myostatin is expressed in human bladder smooth muscle tissue and in isolated SMCs at gene and protein levels. A higher expression of myostatin was detected in ESLUTD-derived compared to control SMCs. Histological assessment of bladder tissue confirmed structural changes and decreased muscle-to-collagen ratios in ESLUTD bladders. A decrease in cell proliferation and in the expression of key contractile genes and proteins, α-SMA, calponin, smoothelin and MyH11, as well as a lower degree of in vitro contractility was observed in ESLUTD-derived compared to control SMCs. A reduction in the myostatin-related proteins Smad 2 and follistatin, and an upregulation in the proteins p-Smad 2 and Smad 7 were observed in ESLUTD SMC samples. This is the first demonstration of myostatin expression in bladder tissue and cells. The increased expression of myostatin and the changes in the Smad pathways were observed in ESLUTD patients. Therefore, myostatin inhibitors could be considered for the enhancement of SMCs for tissue engineering applications and as a therapeutic option for patients with ESLUTD and other smooth muscle disorders.
Asunto(s)
Miostatina , Vejiga Urinaria , Humanos , Niño , Miostatina/metabolismo , Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Contracción Muscular , Células CultivadasRESUMEN
Prostate-specific membrane antigen (PSMA)-based imaging improved the detection of primary, recurrent and metastatic prostate cancer. However, in certain patients, a low PSMA surface expression can be a limitation for this promising diagnostic tool. Pharmacological induction of PSMA might be useful to further improve the detection rate of PSMA-based imaging. To achieve this, we tested dutasteride (Duta)-generally used for treatment of benign prostatic enlargement-and lovastatin (Lova)-a compound used to reduce blood lipid concentrations. We aimed to compare the individual effects of Duta and Lova on cell proliferation as well as PSMA expression. In addition, we tested if a combination treatment using lower concentrations of Duta and Lova can further induce PSMA expression. Our results show that a treatment with ≤1 µM Duta and ≥1 µM Lova lead to a significant upregulation of whole and cell surface PSMA expression in LNCaP, C4-2 and VCaP cells. Lower concentrations of Duta and Lova in combination (0.5 µM Duta + 0.5 µM Lova or 0.5 µM Duta + 1 µM Lova) were further capable of enhancing PSMA protein expression compared to a single compound treatment using higher concentrations in all tested cell lines (LNCaP, C4-2 and VCaP).
Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Dutasterida/farmacología , Dutasterida/metabolismo , Dutasterida/uso terapéutico , Próstata/patología , Lovastatina/farmacología , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Neoplasias de la Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Línea Celular TumoralRESUMEN
INTRODUCTION AND OBJECTIVES: Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS: AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 µM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 µM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS: Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS: Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.
Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Compuestos de Bencidrilo/farmacología , Clorhidrinas/farmacología , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/biosíntesis , Proteína 5 Relacionada con la Autofagia/genética , Benzamidas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Nitrilos , Células PC-3 , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patologíaRESUMEN
BACKGROUND: Prostate-specific membrane antigen (PSMA)-based imaging and therapy are increasingly used in the management of prostate cancer. However, low PSMA surface expression in certain patients is a limitation for PSMA-based technologies. We have previously shown that high doses of dutasteride, a 5α-reductase inhibitor generally used for the treatment of benign prostatic enlargement, increase the PSMA expression in vitro. We now further analyzed the concentration- and time-dependent effects of dutasteride in LNCaP cells. METHODS: Androgen receptor (AR) expressing prostate cancer cells (LNCaP) were treated for 7 to 14 days with vehicle control (0.1% dimethyl sulfoxide) or different concentrations of dutasteride (0.25 , 0.5 , 1 , and 5 µM). In addition to cell proliferation, PSMA surface expression was assessed using flow cytometry (FACS) and immunocytochemistry. Total PSMA and AR expression was analyzed by capillary western immunoassay (WES). In addition, tumor cell uptake and internalization assays of 177 Lu-PSMA-617 were performed. RESULTS: Dutasteride treatment resulted in a significant upregulation of PSMA surface expression compared to vehicle control after 7 days in all tested concentrations. After 14 days a further, concentration-dependent increase of PSMA surface expression was detectable. Total PSMA protein expression significantly increased after treatment of cells with high concentrations of dutasteride using 5 µM for 7 or 14 days. However, when lower concentrations were used total PSMA expression was not significantly altered compared to vehicle control. Further testing revealed a dose-dependent increase in uptake and internalization of 177Lu -PSMA-617 after 7 and 14 days. Though, a significantly increased uptake was only observed using a 5 µM dutasteride concentration for 7 days as well as 1 and 5 µM for 14 days. CONCLUSION: Our investigations revealed a concentration- and time-dependent effect of dutasteride on PSMA expression and uptake of 177Lu -PSMA-617 in LNCaP cells. A short-term treatment of patients with high doses of dutasteride might increase the detection rate of PSMA-based imaging and increase the effect of 177Lu -PSMA-617 therapy via upregulation of PSMA expression.
Asunto(s)
Inhibidores de 5-alfa-Reductasa/farmacología , Antígenos de Superficie/biosíntesis , Dutasterida/farmacología , Glutamato Carboxipeptidasa II/biosíntesis , Próstata/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Dipéptidos/metabolismo , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Humanos , Lutecio/metabolismo , Masculino , Próstata/metabolismo , Antígeno Prostático Específico , Radioisótopos/metabolismo , Receptores Androgénicos/biosíntesis , Regulación hacia ArribaRESUMEN
PURPOSE: Abiraterone acetate (AA) plus prednisone is an approved treatment of advanced prostate cancer (PCa). Autophagy is linked to drug resistance in numerous types of cancers. We hypothesized, that upregulation of autophagy is one of the mechanisms by which PCa cells survive AA anti-tumor treatment and therefore evaluated the potential effect of a combination with autophagy inhibition. METHODS: Human PCa LNCaP cell lines were cultured in steroid-free medium and treated with AA. Autophagy was inhibited by 3-methyladenine, chloroquine and ATG5 siRNA knock-down. Cell viability and apoptosis was assessed by flow cytometry and fluorescence microscopy, and autophagy was monitored by immunohistochemistry, AUTOdot and Western blotting. RESULTS: Western blot revealed upregulation of ATG5 and LC3 II with a reduction of p62 protein expression in AA-treated cells, indicating upregulation of autophagy. These data were supported by results obtained with immunocytochemistry and AUTOdot assays. Using flow cytometry, we showed that combining AA with autophagy inhibition significantly impaired cell viability (1.3-1.6-fold, p < 0.001) and increased apoptosis (1.4-1.5-fold, p < 0.001) compared to AA treatment alone. CONCLUSIONS: AA activates autophagy as a cytoprotective mechanism in LNCaP prostate cancer cells and targeting of autophagy enhances the antitumor effect of the compound.
Asunto(s)
Acetato de Abiraterona/uso terapéutico , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Acetato de Abiraterona/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Adenina/uso terapéutico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/biosíntesis , Proteína 5 Relacionada con la Autofagia/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genéticaRESUMEN
BACKGROUND: Prostate-specific membrane antigen (PSMA)-based imaging and therapy are increasingly used for prostate cancer management. However, limitations are a low PSMA expression in certain patients. Androgen receptor axis inhibition can induce PSMA expression in vitro. We hypothesized that different approved compounds upregulate PSMA expression and tested their effect in vitro. METHODS: Androgen receptor (AR) expressing prostate cancer (LNCaP) and epithelial prostate cells (PNT1A) were treated for 7 days with enzalutamide, dutasteride, rapamycin, metformin, lovastatin, and acetylsalicylic acid (ASA). PSMA and AR protein expression was assessed using flow cytometry, immunocytochemistry and immunoblotting. Furthermore, uptake and internalization of 177 Lu-PSMA-617 was performed. RESULTS: Enzalutamide and dutasteride led to a significant (both P < 0.05) upregulation of PSMA surface levels in LNCaP cells. In addition, treatment with rapamycin showed a non-significant trend toward PSMA upregulation. No changes were detected after treatment with vehicle, metformin, lovastatin, and ASA. Total PSMA protein expression was significantly enhanced after treatment with enzalutamide and rapamycin (both P < 0.05), whereas dutasteride led to a non-significant upregulation. Uptake of 177 Lu-PSMA-617 was significantly increased after treatment of LNCaP with enzalutamide, dutasteride, and rapamycin (P < 0.05). In addition, internalization was significantly increased by enzalutamide and rapamycin (P < 0.05), and non-significantly increased by dutasteride. CONCLUSION: In conclusion, our data provide new insights into the effect of different approved pharmacological compounds that can markedly upregulate PSMA expression and radioligand uptake in vitro. Pharmacologically induced PSMA expression may prove useful to improve prostate cancer detection and to enhance anticancer effects in PSMA-based therapy.
Asunto(s)
Antígenos de Superficie/biosíntesis , Antineoplásicos/farmacología , Glutamato Carboxipeptidasa II/biosíntesis , Próstata/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacosRESUMEN
AIMS: To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. METHODS: Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. RESULTS: ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. CONCLUSIONS: Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle.
Asunto(s)
Autofagia , Síntomas del Sistema Urinario Inferior/fisiopatología , Músculo Liso/fisiopatología , Vejiga Urinaria Neurogénica/fisiopatología , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/biosíntesis , Proteína 5 Relacionada con la Autofagia/genética , Biopsia , Niño , Femenino , Expresión Génica , Humanos , Síntomas del Sistema Urinario Inferior/genética , Masculino , Músculo Liso/efectos de los fármacos , Fagosomas/patología , Vejiga Urinaria Neurogénica/genéticaRESUMEN
Purpose To determine whether magnetization transfer (MT) magnetic resonance (MR) imaging may serve as a quantitative measure of the degree of fiber formation during differentiation of muscle precursor cells into engineered muscle tissue as a potential noninvasive monitoring tool in mice. Materials and Methods The study was approved by the local ethics committee (no. StV 01/2008) and the local Veterinary Office (license no. 99/2013). Human muscle progenitor cells (hMPCs) derived from rectus abdominis muscles were subcutaneously injected into CD-1 nude mice (CD-1 nude mice, Crl:CD1-Foxn1nu; Charles River Laboratories, Wilmington, Mass) for development of muscle tissue. The mice underwent MR imaging examinations at 4.7 T at days 1, 3, 7, 14, 21, and 28 after cell transplantation by using a gradient-echo sequence with an MT prepulse and systematic variation of the off-resonance frequency (50-37 500 Hz) at an amplitude of 800°. Direct saturation was estimated from a Bloch equation simulation. The MT ratio (MTR) was correlated to immunohistochemistry findings, Western blot results, and results of myography. Data were analyzed by using one-way or two-way analysis of variance with the Sidak or Tukey multiple comparisons test. Results In the reference skeletal muscle, highest MT was found for 2500 Hz off-resonance frequency with an MTR ± standard deviation of 57.5% ± 3.5. The developing muscle tissue exhibited increasing MT values during the 28 days of myogenic in vivo differentiation and did not reach the values of native skeletal muscle. Mean values of MTR (2500 Hz) for hMPCs were 27.6% ± 6.3 (day 1), 24.7% ± 8.7 (day 3), 28.2% ± 5.7 (day 7), 35.9% ± 5.0 (day 14), 37.0% ± 7.9 (day 21), and 39.9% ± 8.1 (day 28). The results from MT MR imaging correlated qualitatively well with muscle tissue expression of specific skeletal markers, as well as muscle contractility. Conclusion MT MR imaging may be used to noninvasively monitor the process of myogenic in vivo differentiation of hMPCs as a biomarker of the quantity and quality of muscle fiber formation. © RSNA, 2016 Online supplemental material is available for this article.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Músculo Esquelético/citología , Mioblastos/citología , Animales , Biomarcadores/análisis , Western Blotting , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones DesnudosRESUMEN
Conditions impairing bladder function in children and adults, such as myelomeningocele, posterior urethral valves, bladder exstrophy or spinal cord injury, often need urinary diversion or augmentation cystoplasty as when untreated they may cause severe bladder dysfunction and kidney failure. Currently, the gold standard therapy of end-stage bladder disease refractory to conservative management is enterocystoplasty, a surgical enlargement of the bladder with intestinal tissue. Despite providing functional improvement, enterocystoplasty is associated with significant long-term complications, such as recurrent urinary tract infections, metabolic abnormalities, stone formation, and malignancies. Therefore, there is a strong clinical need for alternative therapies for these reconstructive procedures, of which stem cell-based tissue engineering (TE) is considered to be the most promising future strategy. This review is focused on the recent progress in bladder stem cell research and therapy and the challenges that remain for the development of a functional bladder wall.
RESUMEN
BACKGROUND AIMS: Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS: Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS: Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION: We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Asunto(s)
Células de la Médula Ósea/fisiología , Capilares/fisiología , Endotelio/fisiología , Isquemia , Leucocitos/fisiología , Células Madre Mesenquimatosas/fisiología , Regeneración/fisiología , Piel/irrigación sanguínea , Animales , Capilares/patología , Comunicación Celular , Células Cultivadas , Endotelio/metabolismo , Femenino , Isquemia/patología , Isquemia/fisiopatología , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Piel/inmunologíaRESUMEN
PURPOSE: Bladder outflow obstruction (BOO) is common in the elderly and can result in bladder voiding dysfunction (BVD) due to severe bladder muscle damage. The goal of this research was to evaluate the use of adult stem cells for the treatment of BVD due to decreased muscle contractility in a rat model. MATERIALS AND METHODS: Adipose-derived stem cells (ADSCs) and muscle precursor cells (MPCs) were harvested from male Lewis rats and expanded in culture. BOO was induced by tying a suture around the urethra. Six weeks after obstruction, the development of BVD was confirmed by cystometric analysis in conscious rats, histology and molecular investigations. Injection of ADSCs or MPCs into the bladder wall and synchronous deligation was performed 6 weeks after the obstruction. After stem-cell treatment, morphological and functional changes were assessed. Age-matched rats and animals without cellular therapy but deligation-only served as controls. RESULTS: Voiding pressures decreased progressively 6 weeks after obstruction with increased bladder capacities. Structural changes of the detrusor muscle occurred during the time of obstruction with an increased connective tissue-to-smooth muscle ratio and decreased SMA/smoothelin expression. After stem-cell injection, improved voiding pressures and voiding volumes were observed together with recovered tissue architecture. RT-PCR and Western blotting showed an up-regulation of important contractile proteins. CONCLUSIONS: We established a reliable model for BVD and demonstrated that ADSCs and MPCs can prevent pathophysiological remodelling and provide regenerated bladder tissue and function.
Asunto(s)
Tejido Adiposo/citología , Mioblastos/trasplante , Trasplante de Células Madre , Células Madre , Obstrucción del Cuello de la Vejiga Urinaria/cirugía , Animales , Células Cultivadas , Masculino , Ratas , Ratas Endogámicas LewRESUMEN
PSMA expression gradually increases from benign prostatic hyperplasia to adenocarcinoma of the prostate and is therefore used for the development of improved diagnostic (PSMA)-based prostate cancer imaging tools. Pharmacological induction of PSMA is therefore eminent to further improve the detection rate of PSMA-based imaging. Our previous studies have demonstrated that lovastatin (Lova) and dutasteride (Duta) are able to induce PSMA expression. However, the mechanisms by which PSMA is regulated in prostate cancer remain poorly understood. Androgen receptor (AR) and homeobox B13 (HOXB13) are the best known regulators of PSMA, hence in the present study we aimed to explore the PSMA regulation by HOXB13 and AR signaling in LNCaP and VCaP cells following treatments with Lova and Duta. Furthermore, our previous research revealed a growth arrest in prostate cancer cells after Lova, but not after Duta treatment. To understand this discrepancy, we explored the influence of Lova and Duta on well known tumor growth promoters, such as AR, the mTOR/Akt signaling pathways and Cyclin D1. Our results showed that treatment with Lova leads to a significant inhibition of the investigated tumor promoters and results in growth regression of LNCaP and VCaP cells. In contrast, Duta does not show these effects. Furthermore, we confirm the cooperative effect of HOXB13 and AR in regulating PSMA in LNCaP cells, and extend the investigations to an additional prostate cancer cell line (VCaP).
Asunto(s)
Antígenos de Superficie , Dutasterida , Glutamato Carboxipeptidasa II , Proteínas de Homeodominio , Lovastatina , Neoplasias de la Próstata , Transducción de Señal , Humanos , Masculino , Línea Celular Tumoral , Dutasterida/farmacología , Dutasterida/uso terapéutico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Lovastatina/farmacología , Transducción de Señal/efectos de los fármacos , Receptores Androgénicos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genéticaRESUMEN
OBJECTIVE: Abi, when used in conjunction with prednisone, is an established treatment for advanced PCa. Our goal was to explore the level of autophagy induced by Abi treatment, both alone and in combination with the autophagy inhibitor Chl, in a castrated mouse xenograft model. METHODS: LNCaP cells were injected into the left and right sides of the back of nude mice that had been previously castrated. Mice were divided into four groups and treated daily with intraperitoneal injections of vehicle (control), Abi (10 mg/kg), Abi (10 mg/kg) combined with Chl (10 mg/kg), or Chl (10 mg/kg), and were monitored for periods of 2 and 3 weeks. RESULTS: A significant reduction in tumor weight was observed in mice treated with the combination therapy, as opposed to those receiving vehicle control, Abi, or Chl alone. Mice receiving Abi + Chl exhibited reduced expression of ATG5, Beclin 1, and LC3 punctuations, along with an increase in P62, as determined by immunofluorescence and WES analysis. AR expression decreased significantly in all treatment groups compared to the control. PSMA expression was highest in the vehicle and combined treatment groups after 3 weeks, with a significant reduction observed with Chl treatment. CONCLUSIONS: These findings demonstrate that Abi + Chl treatment lowers autophagy levels and suppresses tumors more effectively than Abi alone.
RESUMEN
Prostate cancer (PCa) often becomes drug-treatment-resistant, posing a significant challenge to effective management. Although initial treatment with androgen deprivation therapy can control advanced PCa, subsequent resistance mechanisms allow tumor cells to continue growing, necessitating alternative approaches. This study delves into the specific metabolic dependencies of different PCa subtypes and explores the potential synergistic effects of combining androgen receptor (AR) inhibition (ARN with mitochondrial complex I inhibition (IACS)). We examined the metabolic behaviors of normal prostate epithelial cells (PNT1A), androgen-sensitive cells (LNCaP and C4-2), and androgen-independent cells (PC-3) when treated with ARN, IACS, or a combination. The results uncovered distinct mitochondrial activities across PCa subtypes, with androgen-dependent cells exhibiting heightened oxidative phosphorylation (OXPHOS). The combination of ARN and IACS significantly curbed cell proliferation in multiple PCa cell lines. Cellular bioenergetics analysis revealed that IACS reduced OXPHOS, while ARN hindered glycolysis in certain PCa cells. Additionally, galactose supplementation disrupted compensatory glycolytic mechanisms induced by metabolic reprogramming. Notably, glucose-deprived conditions heightened the sensitivity of PCa cells to mitochondrial inhibition, especially in the resistant PC-3 cells. Overall, this study illuminates the intricate interplay between AR signaling, metabolic adaptations, and treatment resistance in PCa. The findings offer valuable insights into subtype-specific metabolic profiles and propose a promising strategy to target PCa cells by exploiting their metabolic vulnerabilities.
RESUMEN
BACKGROUND: Apalutamide (APA) is a next-generation androgen receptor antagonist for the treatment of advanced prostate cancer. We have previously shown that upregulation of autophagy is one of the mechanisms by which prostate cancer (PC) cells survive APA anti-tumor treatment in vitro. Therefore, we investigated the characteristics of the autophagic response to APA treatment, alone and in combination with autophagy inhibition, in an in vivo model. METHODS: Tumor cells were injected into previously castrated nude mice. Four groups of mice bearing LNCaP xenografts were treated with daily intraperitoneal (i.p.) injections of vehicle (control), APA (10 mg/kg), APA (10 mg/kg) + Chl (Chloroquine, 10 mg/kg) or Chl (10 mg/kg). The animals of each treatment group (3/treatment) were kept for the duration of 2 and 3 weeks. At the end of the experiments, the animals were sacrificed and all samples assessed for tumor weight and size, histological analysis, immunoblotting (WES) and immunofluorescence. RESULTS: The tumor weight was significantly reduced in mice treated with APA + Chl (203.2 ± 5.0, SEM, P = 0.0066) compared to vehicle control (380.4 ± 37.0). Importantly, the combined treatment showed a higher impact on tumor weight than APA (320.4 ± 45.5) or Chl (337.9 ± 35) alone. The mice treated with the combination of APA + Chl exhibited a reduced expression of ATG5 (autophagy-related five protein), Beclin 1 and LC3 punctuations and an increase in P62 as visualized by immunofluorescence and WES. In addition, Ki-67 nuclear staining was detected in all samples however reduced in APA + Chl (58%) compared to vehicle control (100%). The reduction in Ki-67 protein was associated with an increase in caspase 3 and endothelial CD31 protein expression. CONCLUSION: These data demonstrate that a treatment with APA + Chl leads to reduced autophagy levels and to tumor suppression compared to the APA monotherapy. Hence, the increased antitumor effect of APA in combination with autophagy inhibitors might provide a new therapeutic approach potentially translatable to patients.
Asunto(s)
Antagonistas de Receptores Androgénicos , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Antagonistas de Receptores Androgénicos/farmacología , Apoptosis , Autofagia , Beclina-1 , Caspasa 3 , Línea Celular Tumoral , Cloroquina/farmacología , Cloroquina/uso terapéutico , Modelos Animales de Enfermedad , Xenoinjertos , Antígeno Ki-67 , Ratones Desnudos , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
INTRODUCTION: Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION: The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.
Asunto(s)
Células Madre Adultas , Ingeniería de Tejidos , Animales , Diferenciación Celular/fisiología , Humanos , Músculo Esquelético , Músculo Liso , Células Madre , Ingeniería de Tejidos/métodosRESUMEN
Autologous cell-based tissue engineering has been proposed as a treatment option for end stage lower urinary tract dysfunction (ESLUTD). However, it is generally accepted that cells isolated from patient bladders retain the pathological properties of their tissue of origin and therefore need to be improved before they can serve as a cell source for tissue engineering applications. We hypothesize that human three-dimensional (3D) microtissues of detrusor smooth muscle cells (SMCs) are valuable ex vivo disease models and potent building blocks for bladder tissue engineering. Detrusor SMCs isolated from bladder wall biopsies of pediatric ESLUTD patients and healthy controls were expanded and cultured into 3D microtissues. Gene and protein analyses were performed to explore the effect of microtissue formation on SMC viability, contractile potential, bladder wall specific extracellular matrix (ECM) composition and mediators of ECM remodeling. Through microtissue formation, remodeling and intensified cell-cell interactions, the ESLUTD SMCs lost their characteristic disease phenotype. These microtissues exhibited similar patterns of smooth muscle related contractile proteins and essential bladder wall-specific ECM components as microtissues from healthy control subjects. Thus, the presented data suggest improved contractile potential and ECM composition in detrusor SMC microtissues from pediatric ESLUTD patients. These findings are of great relevance, as 3D detrusor SMC microtissues might be an appropriate cell source for autologous cell-based bladder tissue engineering.
RESUMEN
Despite the fact that a majority of patients with an injury to the spinal cord develop lower urinary tract dysfunction, only few treatment options are available currently once the dysfunction arises. Tibial nerve stimulation has been used in pilot clinical trials, with some promising results. Hence, we investigated whether the early application of transcutaneous tibial nerve stimulation in the animal model of spinal cord injured rats can prevent the development of detrusor overactivity and/or detrusor-sphincter-dyssynergia. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. A dorsal over-hemisection, resulting in an incomplete spinal cord injury at the T8/9 spinal level, induced immediate bladder paralysis. One week later, the animals received daily tibial nerve or sham stimulation for 15 days. Effects of stimulation on the lower urinary tract function were assessed by urodynamic investigation. Measurements showed improvements of several key parameters of lower urinary tract function-in particular, non-voiding bladder contractions and intravesical pressure-immediately after the completion of the stimulation period in the stimulated animals. These differences extinguished one week later, however. In the dorsal horn of the lumbosacral spinal cord, a small significant increase of the density of C-fiber afferents layers I-II was found in the stimulated animals at four weeks after spinal cord injury. Tibial nerve stimulation applied acutely after spinal cord injury in rats had an immediate beneficial effect on lower urinary tract dysfunction; however, the effect was transitory and did not last over time. To achieve more sustainable, longer lasting effects, further studies are needed looking into different stimulation protocols using optimized stimulation parameters, timing, and treatment schedules.