Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682646

RESUMEN

Trastuzumab (Trz) is a humanized monoclonal antibody targeting epidermal growth factor receptor 2 (HER2; ErbB2). The combined administration of Trz and doxorubicin (DOX) has shown potent anti-cancer efficacy; however, this regimen may be accompanied by severe cardiac toxicity. Mesenchymal stem cells (MSCs)-derived exosomes are nanosized vesicles that play a crucial role in cell-cell communication and have shown efficacy in the treatment of various diseases. In this study, we aim to investigate the cardioprotective effects of MSCs-derived exosomes in a DOX/Trz- mediated cardiotoxicity model, and the possible mechanisms underlying these effects are elucidated. Forty-nine male rats were randomly assigned into four groups: Group I (control); Group II (Dox/Trz); Group III (protective group); and Group IV (curative group). Cardiac hemodynamic parameters, serum markers of cardiac injury, oxidative stress indices, and cardiac histopathology were investigated. Further, transcript profile of specific cardiac tissue injury markers, apoptotic markers, and fibrotic markers were analyzed using qRT-PCR, while the protein expressions of pAkt/Akt, pERK/ERK, pJNK/JNK, pJNK/JNK, and pSTAT3/STAT3 were evaluated by ELISA. Additionally, cardiac mirR-21 and miR-26a were assessed. A combined administration of DOX/Trz disrupted redox and Ca2+ homeostasis in cardiac tissue induced myocardial fibrosis and myofibril loss and triggered cardiac DNA damage and apoptosis. This cardiotoxicity was accompanied by decreased NRG-1 mRNA expression, HER2 protein expression, and suppressed AKT and ERK phosphorylation, while triggering JNK phosphorylation. Histological and ultra-structural examination of cardiac specimens revealed features typical of cardiac tissue injury. Moreover, a significant decline in cardiac function was observed through biochemical testing of serum cardiac markers and echocardiography. In contrast, the intraperitoneal administration of MSCs-derived exosomes alleviated cardiac injury in both protective and curative protocols; however, superior effects were observed in the protective protocol. The results of the current study indicate the ability of MSCs-derived exosomes to protect from and attenuate DOX/Trz-induced cardiotoxicity. The NRG-1/HER2, MAPK, PI3K/AKT, PJNK/JNK, and PSTAT/STAT signaling pathways play roles in mediating these effects.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Animales , Apoptosis , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Receptores ErbB/metabolismo , Exosomas/metabolismo , Fibrosis , Masculino , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Neurregulina-1/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Trastuzumab
2.
Biomed Pharmacother ; 176: 116836, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850660

RESUMEN

Alzheimer's disease (AD) is a devastating neurological condition characterized by cognitive decline, motor coordination impairment, and amyloid plaque accumulation. The underlying molecular mechanisms involve oxidative stress, inflammation, and neuronal degeneration. This study aimed to investigate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-exos) on AD and explore the molecular pathways involved, including the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation. To assess the potential of MSC-exos for the treatment of AD, rats were treated with AlCl3 (17 mg/kg/once/day) for 8 weeks, followed by the administration of an autophagy activator (rapamycin), or MSC-exos with or without an autophagy inhibitor (3-methyladenin; 3-MA+ chloroquine) for 4 weeks. Memory impairment was tested, and brain tissues were collected for gene expression analyses, western blotting, histological studies, immunohistochemistry, and transmission electron microscopy. Remarkably, the administration of MSC-exos improved memory performance in AD rats and reduced the accumulation of amyloid-beta (Aß) plaques and tau phosphorylation. Furthermore, MSC-exos promoted neurogenesis, enhanced synaptic function, and mitigated astrogliosis in AD brain tissues. These beneficial effects were associated with the modulation of autophagy and the PI3K/Akt/mTOR signalling pathway, as well as the inhibition of neuroinflammation. Additionally, MSC-exos were found to regulate specific microRNAs, including miRNA-21, miRNA-155, miRNA-17-5p, and miRNA-126-3p, further supporting their therapeutic potential. Histopathological and bioinformatic analyses confirmed these findings. This study provides compelling evidence that MSC-exos hold promise as a potential therapeutic approach for AD. By modulating the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation, MSC-exos have the potential to improve memory, reduce Aß accumulation, enhance neurogenesis, and mitigate astrogliosis. These findings shed light on the therapeutic potential of MSC-exos and highlight their role in combating AD.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Exosomas , Células Madre Mesenquimatosas , Transducción de Señal , Animales , Masculino , Ratas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Autofagia/efectos de los fármacos , Autofagia/fisiología , Modelos Animales de Enfermedad , Exosomas/metabolismo , Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo
3.
Biomed Pharmacother ; 154: 113554, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35987163

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus. Mesenchymal stem cells are currently studied as therapeutic strategy for management of DR. Exosomes, considered as a promising cell-free therapy option, display biological functions similar to those of their parent cells. In retinal development, Wnt/b-catenin signaling provides key cues for functional progression. The present study aimed to evaluate the potential efficacy of bone marrow-derived mesenchymal stem cell-derived exosomes (BM-MSCs-Ex) in diabetes-induced retinal injury via modulation of the Wnt/ b-catenin signaling pathway. METHODS: Eighty-one rats were allocated into 6 groups (control, DR, DR + DKK1, DR + exosomes, DR + Wnt3a and DR + exosomes+Wnt3a). Evaluation of each group was via histopathological examination, assessment of gene and/or protein expression concerned with oxidative stress (SOD1, SOD2, Nox2, Nox4, iNOS), inflammation (TNF-α, ICAM-1, NF-κB) and angiogenesis (VEGF, VE-cadherin). RESULTS: Results demonstrated that exosomes blocked the wnt/b-catenin pathway in diabetic retina concomitant with significant reduction of features of DR as shown by downregulation of retinal oxidants, upregulation of antioxidant enzymes, suppression of retinal inflammatory and angiogenic markers. These results were further confirmed by histopathological results, fundus examination and optical coherence tomography. Additionally, exosomes ameliorative effects abrogated wnt3a-triggered retinal injury in DR. CONCLUSION: Collectively, these data demonstrated that exosomes ameliorated diabetes-induced retinal injury via suppressing Wnt/ b-catenin signaling with subsequent reduction of oxidative stress, inflammation and angiogenesis.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Exosomas , Células Madre Mesenquimatosas , Animales , Cateninas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Exosomas/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Patológica/metabolismo , Ratas , Vía de Señalización Wnt , beta Catenina/metabolismo
4.
Stem Cell Res Ther ; 12(1): 517, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579781

RESUMEN

BACKGROUND: Very small embryonic-like stem cells (VSELs) are a rare population within the ovarian epithelial surface. They contribute to postnatal oogenesis as they have the ability to generate immature oocytes and resist the chemotherapy. These cells express markers of pluripotent embryonic and primordial germ cells. OBJECTIVE: We aimed to explore the capability of VSELs in restoring the postnatal oogenesis of chemo-ablated rat ovaries treated with bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with pregnant mare serum gonadotropin (PMSG). METHODS: Female albino rats were randomly assigned across five groups: I (control), II (chemo-ablation), III (chemo-ablation + PMSG), IV (chemo-ablation + MSCs), and V (chemo-ablation + PMSG + MSCs). Postnatal oogenesis was assessed through measurement of OCT4, OCT4A, Scp3, Mvh, Nobox, Dazl4, Nanog, Sca-1, FSHr, STRA8, Bax, miR143, and miR376a transcript levels using qRT-PCR. Expression of selected key proteins were established as further confirmation of transcript expression changes. Histopathological examination and ovarian hormonal assessment were determined. RESULTS: Group V displayed significant upregulation of all measured genes when compared with group II, III or IV. Protein expression confirmed the changes in transcript levels as group V displayed the highest average density in all targeted proteins. These results were confirmed histologically by the presence of cuboidal germinal epithelium, numerous primordial, unilaminar, and mature Graafian follicles in group V. CONCLUSION: VSELs can restore the postnatal oogenesis in chemo-ablated ovaries treated by BM-MSCs combined with PMSG.


Asunto(s)
Células Madre Mesenquimatosas , Ovario , Animales , Médula Ósea , Células Madre Embrionarias , Femenino , Gonadotropinas , Oogénesis , Ratas
5.
Stem Cell Res Ther ; 12(1): 392, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256844

RESUMEN

BACKGROUND: Diabetic foot ulceration is a serious chronic complication of diabetes mellitus characterized by high disability, mortality, and morbidity. Platelet-rich plasma (PRP) has been widely used for diabetic wound healing due to its high content of growth factors. However, its application is limited due to the rapid degradation of growth factors. The present study aimed to evaluate the efficacy of combined adipose-derived mesenchymal stem cells (ADSCs) and PRP therapy in promoting diabetic wound healing in relation to the Notch signaling pathway. METHODS: Albino rats were allocated into 6 groups [control (unwounded), sham (wounded but non-diabetic), diabetic, PRP-treated, ADSC-treated, and PRP+ADSCs-treated groups]. The effect of individual and combined therapy was evaluated by assessing wound closure rate, epidermal thickness, dermal collagen, and angiogenesis. Moreover, gene and protein expression of key elements of the Notch signaling pathway (Notch1, Delta-like canonical Notch ligand 4 (DLL4), Hairy Enhancer of Split-1 (Hes1), Hey1, Jagged-1), gene expression of angiogenic marker (vascular endothelial growth factor and stromal cell-derived factor 1) and epidermal stem cells (EPSCs) related gene (ß1 Integrin) were assessed. RESULTS: Our data showed better wound healing of PRP+ADSCs compared to their individual use after 7 and 14 days as the combined therapy caused reepithelialization and granulation tissue formation with a marked increase in area percentage of collagen, epidermal thickness, and angiogenesis. Moreover, Notch signaling was significantly downregulated, and EPSC proliferation and recruitment were enhanced compared to other treated groups and diabetic groups. CONCLUSIONS: These data demonstrated that PRP and ADSCs combined therapy significantly accelerated healing of diabetic wounds induced experimentally in rats via modulating the Notch pathway, promoting angiogenesis and EPSC proliferation.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Animales , Diabetes Mellitus Experimental/terapia , Ratas , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
6.
Cells ; 10(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34831042

RESUMEN

BACKGROUND: Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/ß-catenin signaling in liver development and generation. METHODS: Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/ß-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS: iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/ß-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION: This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Hígado/citología , Andamios del Tejido/química , Regulación hacia Arriba , Vía de Señalización Wnt , Albúminas/metabolismo , Animales , Diferenciación Celular , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/ultraestructura , Masculino , Ratas , Urea/metabolismo , alfa-Fetoproteínas/metabolismo , beta Catenina/metabolismo
7.
Virol J ; 4: 135, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-18053271

RESUMEN

BACKGROUND: Transfusion Transmitted virus (TTV) is a novel single-stranded DNA virus that was identified in patients with post-transfusion hepatitis of non-A-G type. Clinical significance of TTV infection was analyzed in Egyptian hepatocellular carcinoma (HCC) patients. The present study attempted to clarify these issues in Egypt, particularly in Qaluobia governorate, a country known for its high endemicity of liver disease and hepatotropic viruses. METHODS: TTV are determined in the serum of 60 samples obtained from HCC and liver cirrhosis (LC) patients and 30 healthy individuals. TTV DNA is amplified by nested-PCR with TTV-specific mixed primers derived from the conserved open reading frame 1 (ORF1) region followed by digestion with restriction enzyme. Using the enzymes HaeIII, DraI, EcoRI and PstI, we are able to distinguish between the four TTV genotypes. RESULTS: The positive rate of TTV detection was 46.7%, 40% and 36.7% among HCC, LC patients and healthy individuals respectively. The more prevalence genotype was detected in the positive serum samples was genotype 1 (35.7%) in HCC patients, (50%) in LC and (63.3%) in healthy individuals, Genotype 5 (21.4%), (25.5%) and (18.2%) in HCC, LC and healthy individuals respectively. DISCUSSION: This study indicates that TTV is commonly present in adult patients with HCC and LC as well as healthy individuals. The most prevalence TTV genotype is genotype 1. It seems that the infection neither contribute to the severity of liver disease no to the causation of HCC.


Asunto(s)
Carcinoma Hepatocelular/virología , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Torque teno virus/clasificación , Torque teno virus/aislamiento & purificación , Adulto , Anciano , Donantes de Sangre , Transfusión Sanguínea , ADN Viral/genética , Egipto , Femenino , Genotipo , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/virología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Torque teno virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA