Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432219

RESUMEN

Lithium-sulfur batteries are considered one of the most appealing technologies for next-generation energy-storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium-polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material. This synthesis process resulted in a morphology capable of ameliorating the shuttle effect and improving the electrode conductivity. The electrochemical characterization of the sulfur-carbon nanohorns active material revealed a remarkable cycle life of 800 cycles with a stable capacity of 520 mA h/g for the first 400 cycles at C/4, while reaching a value around 300 mAh/g at the 750th cycle. These results suggest sulfur-carbon nanohorn active material as a potential candidate for next-generation battery technology.

2.
Mater Horiz ; 9(12): 2914-2948, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36226580

RESUMEN

Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.


Asunto(s)
Técnicas Biosensibles , Nanofibras , Humanos , Nanofibras/química , Biopolímeros , Polímeros , Suministros de Energía Eléctrica
3.
Nanoscale ; 12(29): 15896-15904, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32697249

RESUMEN

Recent studies on anatase TiO2 have demonstrated its capability of performing as an anode material for sodium-ion batteries (SIBs) even though, due to poor conductivity, realistic applications have not yet been foreseen. In order to try to address this issue, herein, we shall introduce a cost effective and facile route based on the co-precipitation method for the synthesis of Mo-doped anatase TiO2 nanoparticles with AlF3 surface coating. The electrochemical measurements demonstrate that the Mo-doped anatase TiO2 nanoparticles deliver an ∼40% enhanced reversible capacity compared to pristine TiO2 (139.8 vs. 100.7 mA h g-1 at 0.1 C after 50 cycles) due to an improved electronic/ionic conductivity. Furthermore, upon AlF3 coating, the overall system can deliver a much higher reversible capacity of 178.9 mA h g-1 (∼80% increase with respect to pristine TiO2) with good cycling stability and excellent rate capabilities of up to 10 C. The experimental results indicate that the AlF3 surface coating could indeed effectively reduce the solid electrolyte interfacial resistance, enhance the electrochemical reactivity at the surface/interface region, and lower the polarization during cycling. The improved performance achieved using a cost-effective fabrication approach makes the dually modified anatase TiO2 a promising anode material for high-performance SIBs.

4.
Environ Sci Pollut Res Int ; 24(36): 27974-27984, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28990143

RESUMEN

The electrochemical performance of lithium ion battery was enhanced by using biochar derived from Cladophora glomerata (C. glomerata) as widespread green macroalgae in most areas of the Iran's Caspian sea coast. By the utilization of the structure of the biochar, micro-/macro-ordered porous carbon with olive-shaped structure was successfully achieved through pyrolysis at 500 °C, which is the optimal temperature for biofuel production, and was activated with HCl. The biochar and HCl treatment biochar (HTB) were applied as anode electrode in lithium ion batteries. Then, electrochemical measurements were conducted on the electrodes via galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) analyses. The electrochemical results indicated a higher specific discharge capacity (700 mAh g-1) and good cycling stability for HTB at the current density of 0.1 A g-1 as compared to the biochar. The reason that HTB electrode works better than the biochar could be due to the higher surface area, formation functional groups, removal impurities, and formation some micropores after HCl treatment. The biochar derived from marine biomass and treatment process developed here could provide a promising path for the low-cost, renewable, and environmentally friendly electrode materials. Graphical abstract Algal-biochar into Li-ion Battery.


Asunto(s)
Carbón Orgánico/química , Chlorophyta/química , Suministros de Energía Eléctrica , Electrodos , Litio/química , Biomasa , Calor , Irán , Océanos y Mares , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA