Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214558

RESUMEN

BACKGROUND AND AIMS: Evidence assessing the role of B cells and their antibodies, or lack thereof, in the spontaneous resolution of acute HCV infection is conflicting. Utilization of a strictly hepatotropic, HCV-related rodent hepacivirus (RHV) model circumvents many of the challenges facing the field in characterizing the immunological correlates of dichotomous infection outcomes. This study seeks to elucidate the importance of B cells in the clearance of acute RHV infection. APPROACH AND RESULTS: µMT mice were infected i.v. with RHV and found to develop chronic infection for over a year. Wild-type (WT) mice depleted of B cells also exhibited persistent viremia that resolved only upon B cell resurgence. The persistent infection developed by B1-8i and AID cre/cre mice revealed that antigen-specific, class-switched B cells or their antibodies were crucial for viral resolution. Virus-specific CD8 + and CD4 + T cells were characterized in these mice using newly developed major histocompatibility complex class I and II tetramers and ex vivo peptide stimulation. Immunoglobulin G (IgG) was purified from the serum of RHV- or lymphocytic choriomeningitis virus Armstrong-infected mice after viral clearance and passively transferred to AID cre/cre recipients, revealing viral clearance only in αRHV IgG recipients. Further, the transfer of αRHV IgG into B cell-depleted recipients also induced viral resolution. This ability of RHV-specific IgG to induce viral clearance was found to require the concomitant presence of CD8 + T cells. CONCLUSIONS: Our findings demonstrate a cooperative interdependence between immunoglobulins and the T cell compartment that is required for RHV resolution. Thus, HCV vaccine regimens should aim to simultaneously elicit robust HCV-specific antibody and T cell responses for optimal protective efficacy.

2.
PLoS Pathog ; 18(11): e1010968, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36378682

RESUMEN

Successive episodes of hepatitis C virus (HCV) infection represent a unique natural rechallenge experiment to define correlates of long-term protective immunity and inform vaccine development. We applied a systems immunology approach to characterize longitudinal changes in the peripheral blood transcriptomic signatures in eight subjects who spontaneously resolved two successive HCV infections. Furthermore, we compared these signatures with those induced by an HCV T cell-based vaccine regimen. We identified a plasma cell transcriptomic signature during early acute HCV reinfection. This signature was absent in primary infection and following HCV vaccine boost. Spontaneous resolution of HCV reinfection was associated with rapid expansion of glycoprotein E2-specifc memory B cells in three subjects and transient increase in E2-specific neutralizing antibodies in six subjects. Concurrently, there was an increase in the breadth and magnitude of HCV-specific T cells in 7 out of 8 subjects. These results suggest a cooperative role for both antibodies and T cells in clearance of HCV reinfection and support the development of next generation HCV vaccines targeting these two arms of the immune system.


Asunto(s)
Hepatitis C , Transcriptoma , Vacunas contra Hepatitis Viral , Humanos , Anticuerpos Neutralizantes , Hepacivirus , Hepatitis C/inmunología , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C , Reinfección , Proteínas del Envoltorio Viral
3.
Hepatology ; 78(6): 1867-1881, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37185268

RESUMEN

BACKGROUND AND AIMS: The HEV is a small positive-sense RNA virus that encodes a cytoplasmic form of the capsid protein (ORF2c), essential for virion structure, and a secreted glycosylated form (ORF2s) that accumulates at high titer in serum and can mask neutralizing epitopes. We explored the contribution of ORF2s to HEV replication and its role in generating antibodies against ORF2 in a nonhuman primate model. APPROACH AND RESULTS: We used a recombinant HEV genotype 3 variant that does not express ORF2s due to the introduction of stop codons (ORF2s mut ). Rhesus macaques (RMs) were given intrahepatic injections of infectious wildtype HEV (ORF2s wt ) RNA or a variant lacking ORF2s expression (ORF2s mut ). The replication of the ORF2s mut virus was delayed by ~2 weeks compared with ORF2s wt , and peak titers were nearly tenfold lower. Reversions of the 3 mutations that blocked ORF2s expression were not detected in the ORF2s mut genomes, indicating genetic stability. However, serum antibodies against ORF2 were transiently detected in RMs infected with ORF2s mut , whereas they were long-lasting in RMs infected with ORF2s wt . Moreover, RMs infected with ORF2s mut were more susceptible to reinfection, as evidenced by the viral RNA detected in fecal samples and the expansion of HEV-specific CD8 + T cells. CONCLUSIONS: These findings indicate that ORF2s may be dispensable for viral replication in vivo but is required for long-lived antibody-mediated responses that protect against HEV re-exposure.


Asunto(s)
Anticuerpos Antivirales , Virus de la Hepatitis E , Animales , Anticuerpos Antivirales/metabolismo , Virus de la Hepatitis E/genética , Macaca mulatta/metabolismo , Formación de Anticuerpos , Epítopos
4.
Hepatology ; 76(5): 1506-1519, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35445423

RESUMEN

BACKGROUND AND AIMS: Lack of tractable immunocompetent animal models amenable to robust experimental challenge impedes vaccine efforts for HCV. Infection with rodent hepacivirus from Rattus norvegicus (RHV-rn1) in rats shares HCV-defining characteristics, including liver tropism, chronicity, and pathology. RHV in vitro cultivation would facilitate genetic studies on particle production, host factor interactions, and evaluation of antibody neutralization guiding HCV vaccine approaches. APPROACH AND RESULTS: We report an infectious reverse genetic cell culture system for RHV-rn1 using highly permissive rat hepatoma cells and adaptive mutations in the E2, NS4B, and NS5A viral proteins. Cell culture-derived RHV-rn1 particles (RHVcc) share hallmark biophysical characteristics of HCV and are infectious in mice and rats. Culture adaptive mutations attenuated RHVcc in immunocompetent rats, and the mutations reverted following prolonged infection, but not in severe combined immunodeficiency (SCID) mice, suggesting that adaptive immune pressure is a primary driver of reversion. Accordingly, sera from RHVcc-infected SCID mice or the early acute phase of immunocompetent mice and rats were infectious in culture. We further established an in vitro RHVcc neutralization assay, and observed neutralizing activity of rat sera specifically from the chronic phase of infection. Finally, we found that scavenger receptor class B type I promoted RHV-rn1 entry in vitro and in vivo. CONCLUSIONS: The RHV-rn1 infectious cell culture system enables studies of humoral immune responses against hepacivirus infection. Moreover, recapitulation of the entire RHV-rn1 infectious cycle in cell culture will facilitate reverse genetic studies and the exploration of tropism and virus-host interactions.


Asunto(s)
Hepacivirus , Hepatitis C , Ratas , Ratones , Animales , Hepacivirus/genética , Replicación Viral/genética , Anticuerpos contra la Hepatitis C , Ratones SCID , Proteínas Virales
5.
Proc Natl Acad Sci U S A ; 116(17): 8609-8614, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30886097

RESUMEN

Monarch butterflies in eastern North America have declined by 84% on Mexican wintering grounds since the observed peak in 1996. However, coarse-scale population indices from northern US breeding grounds do not show a consistent downward trend. This discrepancy has led to speculation that autumn migration may be a critical limiting period. We address this hypothesis by examining the role of multiscale processes impacting monarchs during autumn, assessed using arrival abundances at all known winter colony sites over a 12-y period (2004-2015). We quantified effects of continental-scale (climate, landscape greenness, and disease) and local-scale (colony habitat quality) drivers of spatiotemporal trends in winter colony sizes. We also included effects of peak summer and migratory population indices. Our results demonstrate that higher summer abundance on northern breeding grounds led to larger winter colonies as did greener autumns, a proxy for increased nectar availability in southern US floral corridors. Colony sizes were also positively correlated with the amount of local dense forest cover and whether they were located within the Monarch Butterfly Biosphere Reserve, but were not influenced by disease rates. Although we demonstrate a demographic link between summer and fine-scale winter population sizes, we also reveal that conditions experienced during, and at the culmination of, autumn migration impact annual dynamics. Monarchs face a growing threat if floral resources and winter habitat availability diminish under climate change. Our study tackles a long-standing gap in the monarch's annual cycle and highlights the importance of evaluating migratory conditions to understand mechanisms governing long-term population trends.


Asunto(s)
Migración Animal/fisiología , Mariposas Diurnas/fisiología , Densidad de Población , Estaciones del Año , Animales , Ecosistema , México , Modelos Biológicos , Dinámica Poblacional , Estados Unidos
6.
J Hepatol ; 75(3): 557-564, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33961939

RESUMEN

BACKGROUND & AIMS: HEV is a significant cause of acute hepatitis globally. Some genotypes establish persistent infection when immunity is impaired. Adaptive immune mechanisms that mediate resolution of infection have not been identified. Herein, the requirement for CD8+ T cells to control HEV infection was assessed in rhesus macaques, a model of acute and persistent HEV infection in humans. METHODS: Rhesus macaques were untreated or treated with depleting anti-CD8α monoclonal antibodies before challenge with an HEV genotype (gt)3 isolate derived from a chronically infected human patient. HEV replication, alanine aminotransferase, anti-capsid antibody and HEV-specific CD4+ and CD8+ T cell responses were assessed after infection. RESULTS: HEV control in untreated macaques coincided with the onset of a neutralizing IgG response against the ORF2 capsid and liver infiltration of functional HEV-specific CD4+ and CD8+ T cells. Virus control was delayed by 1 week in CD8+ T cell-depleted macaques. Infection resolved with onset of a neutralizing IgG antibody response and a much more robust expansion of CD4+ T cells with antiviral effector function. CONCLUSIONS: Liver infiltration of functional CD8+ T cells coincident with HEV clearance in untreated rhesus macaques, and a 1-week delay in HEV clearance in CD8+ T cell-depleted rhesus macaques, support a role for this subset in timely control of virus replication. Resolution of infection in the absence of CD8+ T cells nonetheless indicates that neutralizing antibodies and/or CD4+ T cells may act autonomously to inhibit HEV replication. HEV susceptibility to multiple adaptive effector mechanisms may explain why persistence occurs only with generalized immune suppression. The findings also suggest that neutralizing antibodies and/or CD4+ T cells should be considered as a component of immunotherapy for chronic infection. LAY SUMMARY: The hepatitis E virus (HEV) is a major cause of liver disease globally. Some genetic types (genotypes) of HEV persist in the body if immunity is impaired. Our objective was to identify immune responses that promote clearance of HEV. Findings indicate that HEV may be susceptible to multiple arms of the immune response that can act independently to terminate infection. They also provide a pathway to assess immune therapies for chronic HEV infection.


Asunto(s)
Hepatitis E/rehabilitación , Inmunoglobulina G/farmacología , Macaca mulatta/virología , Animales , Linfocitos T CD8-positivos/fisiología , Modelos Animales de Enfermedad , Haplorrinos , Virus de la Hepatitis E/efectos de los fármacos , Virus de la Hepatitis E/patogenicidad , Inmunoglobulina G/uso terapéutico , Hígado/virología
7.
PLoS Pathog ; 14(1): e1006865, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364981

RESUMEN

Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis.


Asunto(s)
Antígenos Nucleares/genética , Gammaherpesvirinae/genética , Proteínas Virales/genética , Células 3T3 , Animales , Células Cultivadas , Enfermedad Crónica , Embrión de Mamíferos , Femenino , Gammaherpesvirinae/patogenicidad , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis/fisiología , Células 3T3 NIH , Especificidad de Órganos , Latencia del Virus/genética
8.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747501

RESUMEN

Latency-associated nuclear antigen (LANA) is a multifunctional protein encoded by members of the Rhadinovirus genus of gammaherpesviruses. Studies using murine gammaherpesvirus 68 (MHV68) demonstrated that LANA is important for acute replication, latency establishment, and reactivation in vivo Despite structural similarities in their DNA-binding domains (DBDs), LANA homologs from Kaposi sarcoma-associated herpesvirus (KSHV) and MHV68 exhibit considerable sequence divergence. We sought to determine if KSHV and MHV68 LANA homologs are functionally interchangeable. We generated an MHV68 virus that encodes KSHV LANA (kLANA) in place of MHV68 LANA (mLANA) and evaluated the virus's capacity to replicate, establish and maintain latency, and reactivate. kLANA knock-in (KLKI) MHV68 was replication competent in vitro and in vivo but exhibited slower growth kinetics and lower titers than wild-type (WT) MHV68. Following inoculation of mice, KLKI MHV68 established and maintained latency in splenocytes and peritoneal cells but did not reactivate efficiently ex vivo kLANA repressed the MHV68 promoter for ORF50, the gene that encodes the major lytic transactivator protein RTA, while mLANA did not, suggesting a likely mechanism for the KLKI MHV68 phenotypes. Bypassing this repression by providing MHV68 RTA in trans rescued KLKI MHV68 replication in tissue culture and enabled detection of KLKI MHV68 reactivation ex vivo These data demonstrate that kLANA and mLANA are functionally interchangeable for establishment and maintenance of latency and suggest that repression of lytic replication by kLANA, as previously shown with KSHV, is a kLANA-specific function that is transferable to MHV68.IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) are members of the Rhadinovirus genus of gammaherpesviruses. These viruses establish lifelong infections that place their respective human and murine hosts at risk for cancer. Latency-associated nuclear antigen (LANA) is a conserved Rhadinovirus protein that is necessary for long-term chronic infection by these viruses. To better understand the conserved functions performed by LANA homologs, we generated a recombinant MHV68 virus that encodes the KSHV LANA protein in place of the MHV68 LANA homolog. We determined that the KSHV LANA protein is capable of supporting MHV68 latency in a mouse model of chronic infection but also functions to repress viral replication. This work describes an in vivo model system for defining evolutionarily conserved and divergent functions of LANA homologs in Rhadinovirus infection and disease.


Asunto(s)
Antígenos Virales/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Proteínas Inmediatas-Precoces/genética , Proteínas Nucleares/genética , Rhadinovirus/crecimiento & desarrollo , Transactivadores/genética , Latencia del Virus/genética , Células 3T3 , Animales , Antígenos Virales/biosíntesis , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Regiones Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo
9.
J Virol ; 90(3): 1397-413, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581985

RESUMEN

UNLABELLED: Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE: Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.


Asunto(s)
Antígenos Virales/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Rhadinovirus/fisiología , Replicación Viral , Animales , Antígenos Virales/genética , Línea Celular , Centrifugación , Eliminación de Gen , Inmunoprecipitación , Marcaje Isotópico , Espectrometría de Masas , Ratones , Proteínas Nucleares/genética , Unión Proteica , Mapas de Interacción de Proteínas , Rhadinovirus/genética
10.
J Hered ; 108(2): 163-175, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003372

RESUMEN

Population genetic variation and demographic history in Danaus plexippus (L.), from Mexico were assessed based on analyses of mitochondrial cytochrome c oxidase subunit I (COI; 658 bp) and subunit II (COII; 503 bp) gene segments and 7 microsatellite loci. The sample of 133 individuals included both migratory monarchs, mainly from 4 overwintering sites within the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico (states of Michoacán and México), and a nonmigratory population from Irapuato, Guanajuato. Haplotype (h) and nucleotide (π) diversities were relatively low, averaging 0.466 and 0.00073, respectively, for COI, and 0.629 and 0.00245 for COII. Analysis of molecular variance of the COI data set, which included additional GenBank sequences from a nonmigratory Costa Rican population, showed significant population structure between Mexican migratory monarchs and nonmigratory monarchs from both Mexico and Costa Rica, suggesting limited gene flow between the 2 behaviorally distinct groups. Interestingly, while the COI haplotype frequencies of the nonmigratory populations differed from the migratory, they were similar to each other, despite the great physical distance between them. Microsatellite analyses, however, suggested a lack of structure between the 2 groups, possibly owing to the number of significant deviations from Hardy-Weinberg equilibrium resulting from heterzoygote deficiencies found for most of the loci. Estimates of demographic history of the combined migratory MBBR monarch population, based on the mismatch distribution and Bayesian skyline analyses of the concatenated COI and COII data set (n = 89) suggested a population expansion dating to the late Pleistocene (~35000-40000 years before present) followed by a stable effective female population size (Nef) of about 6 million over the last 10000 years.


Asunto(s)
Mariposas Diurnas/genética , ADN Mitocondrial , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Animales , Teorema de Bayes , Biodiversidad , Mariposas Diurnas/clasificación , Amplificación de Genes , Genes Mitocondriales , Haplotipos , Densidad de Población
12.
J Virol ; 90(5): 2571-85, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676792

RESUMEN

UNLABELLED: Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE: Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Rhadinovirus/fisiología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Femenino , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional
13.
Conserv Biol ; 28(1): 177-86, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24001209

RESUMEN

We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve.


Asunto(s)
Mariposas Diurnas/fisiología , Conservación de los Recursos Naturales/tendencias , Ambiente , Monitoreo del Ambiente , Animales , Conservación de los Recursos Naturales/economía , México , Estaciones del Año
14.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38410446

RESUMEN

SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.

15.
J Virol ; 86(8): 4340-57, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22318145

RESUMEN

We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.


Asunto(s)
Gammaherpesvirinae/genética , Perfilación de la Expresión Génica , Transcriptoma , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/virología , Línea Celular , Análisis por Conglomerados , Biología Computacional , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Genoma Viral , Activación de Linfocitos/efectos de los fármacos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Elementos Reguladores de la Transcripción , Reproducibilidad de los Resultados , Acetato de Tetradecanoilforbol/farmacología
16.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961505

RESUMEN

Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE: Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.

17.
Curr Opin Insect Sci ; 60: 101112, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837693

RESUMEN

Each fall, millions of monarch butterflies (Danaus plexippus L.) travel from Canada and the United States to overwinter in Mexico and California. In 2022, the IUCN listed migratory monarchs as endangered because of their population decline. The main accepted drivers are widespread use of herbicides, effects of climate, and land use change that causes habitat loss. We analyzed the main actions taken to officially protect the overwintering sites and the migration phenomenon with the establishment of the Monarch Butterfly Biosphere Reserve in 2000. The conservation of the monarch overwintering sites in Mexico is an example of continuous work from their discovery to the present. We highlight the importance of monitoring the areas covered by overwintering monarchs in Mexico. These colonies represent the largest concentrations of monarch populations in the world. In the last 10 years, the average area covered by monarchs was 2.72 ( ± 0.47 SE) hectares.


Asunto(s)
Mariposas Diurnas , Animales , Estados Unidos , México , Ecosistema , Clima , Migración Animal
18.
Plants (Basel) ; 11(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365382

RESUMEN

BACKGROUND: Climate change results in warmer air temperatures and an uncertain amount and distribution of annual precipitations, which will directly impact rainfed crops, such as the grapevine. Traditionally, ancient autochthones grapevine varieties have been substituted by modern ones with higher productivity. However, this homogenization of genotypes reduces the genetic diversity of vineyards which could make their ability to adapt to challenges imposed by future climate conditions difficult. Therefore, this work aimed to assess the response of four ancient grapevine varieties to high temperatures under different water availabilities, focusing on plant water relations, grape technological and phenolic maturity, and the antioxidant capacity of the must. METHODS: The study was conducted on fruit-bearing cuttings grown in pots in temperature-gradient greenhouses. A two-factorial design was established where two temperature regimes, ambient and elevated (ambient + 4 °C), were combined with two water regimes, full irrigation and post-veraison deficit irrigation, during fruit ripening. RESULTS: There were significant differences among the ancient varieties regarding plant water relations and fruit quality. CONCLUSION: This research underlines the importance of evaluating the behavior of ancient grapevine varieties that could offer good options for the adaptation of viticulture to future climate conditions.

19.
Nat Commun ; 13(1): 5446, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114169

RESUMEN

The increasing incidence of hepatitis C virus (HCV) infections underscores the need for an effective vaccine. Successful vaccines to other viruses generally depend on a long-lasting humoral response. However, data on the half-life of HCV-specific responses are lacking. Here we study archived sera and mononuclear cells that were prospectively collected up to 18 years after cure of chronic HCV infection to determine the role of HCV antigen in maintaining neutralizing antibody and B cell responses. We show that HCV-neutralizing activity decreases rapidly in potency and breadth after curative treatment. In contrast, HCV-specific memory B cells persist, and display a restored resting phenotype, normalized chemokine receptor expression and preserved ability to differentiate into antibody-secreting cells. The short half-life of HCV-neutralizing activity is consistent with a lack of long-lived plasma cells. The persistence of HCV-specific memory B cells and the reduced inflammation after cure provide an opportunity for vaccination to induce protective immunity against re-infection.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Células B de Memoria , Anticuerpos Neutralizantes , Hepacivirus/genética , Hepatitis C Crónica/terapia , Humanos , Células B de Memoria/metabolismo , Células B de Memoria/virología , Receptores de Quimiocina , Vacunas contra Hepatitis Viral
20.
Front Immunol ; 13: 908108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911701

RESUMEN

Cancer patients (CPs) have been identified as particularly vulnerable to SARS-CoV-2 infection, and therefore are a priority group for receiving COVID-19 vaccination. From the patients with advanced solid tumors, about 20% respond very efficiently to immunotherapy with anti-PD1/PD-L1 antibodies and achieve long lasting cancer responses. It is unclear whether an efficient cancer-specific immune response may also correlate with an efficient response upon COVID-19 vaccination. Here, we explored the antiviral immune response to the mRNA-based COVID-19 vaccine BNT162b2 in a group of 11 long-lasting cancer immunotherapy responders. We analysed the development of SARS-CoV-2-specific IgG serum antibodies, virus neutralizing capacities and T cell responses. Control groups included patients treated with adjuvant cancer immunotherapy (IMT, cohort B), CPs not treated with immunotherapy (no-IMT, cohort C) and healthy controls (cohort A). The median ELISA IgG titers significantly increased after the prime-boost COVID vaccine regimen in all cohorts (Cohort A: pre-vaccine = 900 (100-2700), 3 weeks (w) post-boost = 24300 (2700-72900); Cohort B: pre-vaccine = 300 (100-2700), 3 w post-boost = 8100 (300-72900); Cohort C: pre-vaccine = 500 (100-2700), 3 w post-boost = 24300 (300-72900)). However, at the 3 w post-prime time-point, only the healthy control group showed a statistically significant increase in antibody levels (Cohort A = 8100 (900-8100); Cohort B = 900 (300-8100); Cohort C = 900 (300-8100)) (P < 0.05). Strikingly, while all healthy controls generated high-level antibody responses after the complete prime-boost regimen (Cohort A = 15/15 (100%), not all CPs behaved alike [Cohort B= 12/14 (84'6%); Cohort C= 5/6 (83%)]. Their responses, including those of the long-lasting immunotherapy responders, were more variable (Cohort A: 3 w post-boost (median nAb titers = 95.32 (84.09-96.93), median Spike-specific IFN-γ response = 64 (24-150); Cohort B: 3 w post-boost (median nAb titers = 85.62 (8.22-97.19), median Spike-specific IFN-γ response (28 (1-372); Cohort C: 3 w post-boost (median nAb titers = 95.87 (11.8-97.3), median Spike-specific IFN-γ response = 67 (20-84)). Two long-lasting cancer responders did not respond properly to the prime-boost vaccination and did not generate S-specific IgGs, neutralizing antibodies or virus-specific T cells, although their cancer immune control persisted for years. Thus, although mRNA-based vaccines can induce both antibody and T cell responses in CPs, the immune response to COVID vaccination is independent of the capacity to develop an efficient anti-cancer immune response to anti PD-1/PD-L1 antibodies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas Virales , Antígeno B7-H1 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunoglobulina G , Inmunoterapia , Neoplasias/terapia , Informe de Investigación , SARS-CoV-2/inmunología , Vacunación , Vacunas de ARNm/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA