Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Chemistry ; 30(29): e202400078, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38470292

RESUMEN

Water splitting has become a sustainable and clean alternative for hydrogen production. Commonly, the efficiency of such reactions is intimately related to the physico-chemical properties of the catalysts that constitute the electrolyzer. Thus, the development of simple and fast methods to evaluate the electrocatalytic efficiency of an electrolyzer is highly required. In this work, we present an unconventional method based on the combination of bipolar electrochemistry and light-emitting diodes, which allows the evaluation of the electrocatalytic performance of the two types of catalysts, composing an electrolyzer, namely for oxygen and hydrogen evolution reactions, respectively. The integrated light emission of the diode acts as an optical readout of the electrocatalytic information, which simultaneously depends on the composition of the anode and the cathode. The electrocatalytic activity of Au, Pt, and Ni electrodes, connected to the LED in multiple anode/cathode configurations, towards the water splitting reactions has been evaluated. The efficiency of the electrolyzer can be represented in terms of the onset electric field (ϵonset) for light emission, obtaining variations that are in agreement with data reported with conventional electrochemistry. This work introduces a straightforward method for evaluating electrocatalysts and underscores the importance of material characterization in developing efficient electrolyzers for hydrogen production.

2.
Chemphyschem ; 25(16): e202400257, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38757220

RESUMEN

Graphene has gained substantial research interest in many fields due to its remarkable properties among many other two-dimensional materials. In this study, we propose a wireless electrochemical approach, bipolar electrochemistry, for the precise modification of single layers of graphene at predefined locations, such as distinct edges or corners, with a variety of metals or polymers, thus enabling the elaboration of multi-functional monolayer graphene sheets. We illustrate the concept e. g. by depositing multiple metals, or platinum and a catalyst-containing porous polymer on the same graphene sheet, but at separate corners. This configuration allows activating chemiluminescence on the polymer spot, and simultaneously generates the driving force for autonomous motion on the Pt side through the catalytic decomposition of hydrogen peroxide into oxygen bubbles. This integration of different chemical features on the same object, exemplified by these proof-of-principle experiments, enhances the functionality of two-dimensional materials, paving the way for the use of these hybrid materials for a variety of applications, ranging from sensing and catalysis to targeted delivery.

3.
Chemphyschem ; 25(12): e202400133, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38624189

RESUMEN

Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.

4.
Anal Bioanal Chem ; 416(16): 3677-3685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755462

RESUMEN

Chirality is a fundamental and ubiquitous property of nature involved in multiple fields of science. In particular, the possible resolution of the enantiomeric forms of a molecule is crucial in the pharmaceutical, food, and agrochemical industries. The search for efficient, broad-spectrum, and yet simple methods for obtaining enantiomerically pure substances is a current challenge. Enantioselective resolution methods rely on an asymmetric environment that allows the two antipodes of a chiral molecule to be distinguished. In addition to enantiomeric separation techniques, such as chromatography and electrophoresis, new promising approaches involving out-of-the-scheme synergistic effects between chiral selectors (CS) and external stimuli are emerging. This Trends article discusses different enantioselective mechanisms triggered by unconventional physicochemical stimuli for the design of avant-garde approaches that could offer novel perspectives in the field of chiral resolution.

5.
Chirality ; 36(8): e23710, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109543

RESUMEN

In recent years, transductors of chiral information based on conducting polymers have gained considerable attention. In particular, inherently chiral materials, which allow differentiation between the antipodes of a chiral analyte in terms of energetic variations, are highly desired. In this work, we successfully synthesized a novel inherently chiral oligomer based on an indole-benzothiophene core, namely, 2-([2,2'-bithiophen]-5-yl)-3-(2-([2,2'-bithiophen]-5-yl)benzo[b]thiophen-3-yl)-N-methylindole (BTIndT4). The electrochemical characterization evidences a stabilization of electrogenerated radical cations due to the presence of the indole group, which guides the oligomerization, producing well-ordered polymeric matrices. Furthermore, the in situ electrochemical conductance analysis demonstrates a simultaneous intrachain and interchain transfer of charge carriers. Finally, the highly efficient enantiorecognition capabilities of the antipodes of the oligo-BTIndT4 films toward the enantiomers of tryptophan and 3,4-dihydroxyphenylalanine (DOPA), as model chiral analytes, were demonstrated.

6.
Nano Lett ; 23(17): 8180-8185, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642420

RESUMEN

Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.

7.
Angew Chem Int Ed Engl ; 63(37): e202408198, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38924323

RESUMEN

An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of µT upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.

8.
Faraday Discuss ; 247(0): 34-44, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37470179

RESUMEN

Chemistry on-the-fly is an interesting concept, extensively studied in recent years due to its potential use for recognition, quantification and conversion of chemical species in solution. In this context, chemistry on-the-fly for asymmetric synthesis is a promising field of investigation, since it can help to overcome mass transport limitations, present for example in conventional organic electrosynthesis. Herein, the synergy between a magnetic field-enhanced self-electrophoretic propulsion mechanism and enantioselective redox chemistry on-the-fly is proposed as an efficient method to boost stereoselective conversion. We employ Janus swimmers as redox-active elements, exhibiting a well-controlled clockwise or anticlockwise motion with a speed that can be increased by one order of magnitude in the presence of an external magnetic field. While moving, these bifunctional objects convert spontaneously on-the-fly a prochiral molecule into a specific enantiomer with high enantiomeric excess. The magnetic field-enhanced self-mixing of the swimmers, based on the formation of local magnetohydrodynamic vortices, leads to a significant improvement of the reaction yield and the conversion rate.

9.
Chirality ; 35(2): 110-117, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513396

RESUMEN

Microfluidic valves based on chemically responsive materials have gained considerable attention in recent years. Herein, a wireless enantio-responsive valve triggered by bipolar electrochemistry combined with chiral recognition is reported. A conducting polymer actuator functionalized with the enantiomers of an inherently chiral oligomer was used as bipolar valve to cover a tube loaded with a dye and immersed in a solution containing chiral analytes. When an electric field is applied, the designed actuator shows a reversible cantilever-type deflection, allowing the release of the dye from the reservoir. The tube can be opened and closed by simply switching the polarity of the system. Qualitative results show the successful release of the colorant, driven by chirality and redox reactions occurring at the bipolar valve. The device works well even in the presence of chemically different chiral analytes in the same solution. These systems open up new possibilities in the field of microfluidics, including also controlled drug delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Estereoisomerismo , Sistemas de Liberación de Medicamentos/métodos
10.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677628

RESUMEN

In this work, we provide electrochemical and spectroscopic evidence of the conducting polymer-heavy metal ion interaction by comparing the electrochemical and spectroscopic behavior (FTIR) of two different conducting polymer-modified electrodes based on 3,4-alkoxythiophenes: 3,4-ethylenedioxythiophene (EDOT) and ortho-xylen-3,4-dioxythiophene (XDOT) during the potentiodynamic stripping of copper. By analyzing the electrochemical and spectroscopic results, it is possible to propose two different copper dissolution processes during the electrochemical stripping process, which depend on the conducting polymer used. With PEDOT matrix, stripping occurs in a two-step pathway, observed as two anodic peaks, involving the formation of the Cu+-PEDOT complex and the subsequent oxidation step of the Cu+ complex to release Cu2+ ions. On the other side, the experiments carried out let us propose the formation of a poorly stable Cu2+-PXDOT complex or a superficial mechanism for the Cu2+ release, characterized by a single stripping signal for this process. Thus, the incorporation of Cu ions into the matrix and the stripping release are intimately related to the chemical structure of the polymer used.

11.
Anal Chem ; 94(41): 14317-14321, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190826

RESUMEN

Bipolar electrochemistry (BE) is a wireless electrochemical technique, which enables asymmetric electroactivity on the surface of conducting objects. This technique has been extensively studied for different electrochemical applications, including synthesis, separation, sensing, and surface modification. Here, we employ BE for imaging the transient electrochemical activity of different redox species with high accuracy via an array of light-emitting diodes having different lengths. Such a gradient allows the differentiation of redox systems due to their intrinsic difference in thermodynamic potential and the evaluation of their diffusional behavior based on the intensity of light emission. The result is an instantaneous optical readout of analytical information, equivalent to classic electrochemical scanning techniques, such as linear sweep voltammetry.


Asunto(s)
Técnicas Electroquímicas , Técnicas Electroquímicas/métodos , Electroquímica/métodos , Electrodos , Oxidación-Reducción
12.
Angew Chem Int Ed Engl ; 61(40): e202209098, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35939399

RESUMEN

The development of chiral catalysts plays a very important role in various areas of chemical science. Heterogeneous catalysts have the general advantage of allowing a more straightforward separation from the products. One specific case of heterogeneous catalysis is electrocatalysis, being potentially a green chemistry approach. However, a typical drawback is that the redox conversion of molecules occurs only at the electrode/electrolyte interface, and not in the bulk of the electrolyte. The second limitation is that the electrodes have to be physically connected to a power supply to induce the desired reactions. To circumvent these problems, we propose here a complementary approach by replacing macroscopic electrodes with an ensemble of self-propelled redox active microswimmers. They move autonomously in solution while transforming simultaneously a prochiral starting compound into a specific enantiomer with a very high enantiomeric excess, accompanied by a significantly increased production rate of the favorite enantiomer.

13.
J Am Chem Soc ; 143(32): 12708-12714, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34343427

RESUMEN

Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.

14.
Chemphyschem ; 22(13): 1321-1325, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33939868

RESUMEN

Numerous artificial micro- and nanomotors, as well as various swimmers have been inspired by living organisms that are able to move in a coordinated manner. Their cooperation has also gained a lot of attention because the resulting clusters are able to adapt to changes in their environment and to perform complex tasks. However, mimicking such a collective behavior remains a challenge. In the present work, magnesium microparticles are used as chemotactic swimmers with pronounced collective features, allowing the gradual formation of macroscopic agglomerates. The formed clusters act like a single swimmer able to follow pH gradients. This dynamic behavior can be used to spot localized corrosion events in a straightforward way. The autonomous docking of the swimmers to the corrosion site leads to the formation of a local protection layer, thus increasing corrosion resistance and triggering partial self-healing.


Asunto(s)
Hierro/química , Magnesio/química , Movimiento , Corrosión , Concentración de Iones de Hidrógeno , Hidróxido de Magnesio/química , Oxidación-Reducción
15.
Chirality ; 33(12): 875-882, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34617330

RESUMEN

Bipolar electrochemistry has gained increasing attention in recent years as an attractive transduction concept in analytical chemistry in general and, more specifically, in the frame of chiral recognition. Herein, we use this concept of wireless electrochemistry, based on the combination of the enantioselective oxidation of a chiral probe with the emission of light from a light-emitting diode (LED), as an alternative for an easy and straightforward readout of the presence of chiral molecules in solution. A hybrid polymer-microelectronic device was designed, using an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) and a polypyrrole strip as the anode and cathode of a miniaturized LED. The wireless induced redox reactions trigger light emission when the probe with the right chirality is present in solution, whereas no light emission is observed for the opposite enantiomer. The average light intensity shows a linear correlation with the analyte concentration, and the concept opens the possibility to quantify the enantiomeric excess in mixtures of the molecular antipodes.

16.
Macromol Rapid Commun ; 41(12): e2000134, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32372507

RESUMEN

An approach providing cation-selective poly-(3,4-ethylenedioxythiophene)(PEDOT):polyelectrolyte-mixed conductors is presented in this communication based on the structural modification of this ambivalent (ionic and electronic conductive) polymer complex. First, an 18-crown-6 moiety is integrated into the styrene sulfonate monomer structure as a specific metal cation scavenger particularly targeting K+ versus Na+ detection. This newly functionalized monomer is characterized by 1 H NMR titration to evaluate the ion selectivity. Aqueous PEDOT dispersion inks containing the polymeric ion-selective moieties are designed and their electrical and electrochemical properties analyzed. These biocompatible inks are the first proof-of-concept step towards ion selectivity in view of their interfacing with biological cells and microorgans of interest in the field of biosensors and physiology.


Asunto(s)
Polímeros/química , Potasio/química , Conductividad Eléctrica , Iones/química , Estructura Molecular , Polímeros/síntesis química
17.
Angew Chem Int Ed Engl ; 59(19): 7508-7513, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067303

RESUMEN

Miniaturized autonomous chemo-electronic swimmers, based on the coupling of spontaneous oxidation and reduction reactions at the two poles of light-emitting diodes (LEDs), are presented as chemotactic and magnetotactic devices. In homogeneous aqueous media, random motion caused by a bubble-induced propulsion mechanism is observed. However, in an inhomogeneous environment, the self-propelled devices exhibit positive chemotactic behavior, propelling themselves along a pH or ionic strength gradient (∇pH and ∇I, respectively) in order to reach a thermodynamically higher active state. In addition, the intrinsic permanent magnetic moment of the LED allows self-orientation in the terrestrial magnetic field or following other external magnetic perturbations, which enables a directional motion control coupled with light emission. The interplay between chemotaxis and magnetotaxis allows fine-tuning of the dynamic behavior of these swimmers.

18.
Anal Chem ; 90(20): 11770-11774, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30251532

RESUMEN

Highly ordered macroporous electrodes of the conducting polymer poly-3,4- ortho-xylendioxythiophene (PXDOT) are presented as a sensitive analytical tool for heavy metal ion quantification due to a controlled gain in electroactive area. They were designed by using colloidal crystal templates. A direct correlation between the final number of porous layers and the deposition charge ( Qd) employed for electropolymerization is observed. All the electrodes exhibit a surface-templated structure due to an interaction between the radical cation, formed during the electropolymerization, and the surface groups of the silica beads. The voltamperometric response of the macroporous PXDOT electrodes shows a rather fast electron transfer with Δ Ep values between 70 mV and 110 mV. Square wave anodic stripping voltammetric (SWASV) analysis of Cu2+ as a representative heavy metal ion shows a linear response in the subppm range. As a model application, the efficient quantification of Cu2+ in a commercial mezcal sample is validated by the standard addition method and the results correlate adequately with the values obtained by atomic absorption spectroscopy.

19.
Chem Commun (Camb) ; 60(74): 10120-10123, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38979647

RESUMEN

Electroorganic synthesis has become an exciting tool for the asymmetric conversion of pro-chiral compounds. Herein, we introduced a wireless methodology based on bipolar electrochemistry in synergy with the enantioselective capabilities of inherently chiral oligomers to induce an umpolung chirality transfer. This was exemplified by the electro-conversion of a racemic mixture of lansoprazole to an enantio-enriched solution of a single antipode.

20.
Chempluschem ; : e202400310, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114955

RESUMEN

Developing chemiresistive devices for the wireless detection of complex analytes has gained considerable interest. In particular, the enantioselective recognition of chiral molecules is still a challenge. Here, we design a hybrid chemiresistive device for the wireless enantioselective discrimination of chiral analytes by combining the enantiorecognition capabilities of an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) (BT2T4) and the insulating/conducting transition of polypyrrole (Ppy). The device is obtained by modifying each extremity of an interdigitated electrode (IDE) with Ppy on the interdigitated area and oligo-BT2T4 on the connection pads. Due to the asymmetric electroactivity triggered by bipolar electrochemistry, the wireless enantioselective discrimination of both enantiomers of tryptophan and DOPA was achieved. A difference in the onset resistance values was obtained for both enantiomers due to a favorable or unfavorable diastereomeric interaction between the inherently chiral oligomer and the antipode of the chiral molecule. Interestingly, such a device showed a wide quantification range, from µM to mM levels. This work opens up new alternatives to designing advanced wireless devices in enantiorecognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA