Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 17(18): 17884-17896, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37656985

RESUMEN

In future solar cell technologies, the thermodynamic Shockley-Queisser limit for solar-to-current conversion in traditional p-n junctions could potentially be overcome with a bulk photovoltaic effect by creating an inversion broken symmetry in piezoelectric or ferroelectric materials. Here, we unveiled mechanical distortion-induced bulk photovoltaic behavior in a two-dimensional (2D) material, MoTe2, caused by the phase transition and broken inversion symmetry in MoTe2. The phase transition from single-crystalline semiconducting 2H-MoTe2 to semimetallic 1T'-MoTe2 was confirmed using X-ray photoelectron spectroscopy (XPS). We used a micrometer-scale system to measure the absorption of energy, which reduced from 800 to 63 meV during phase transformation from hexagonal to distorted octahedral and revealed a smaller bandgap semimetallic behavior. Experimentally, a large bulk photovoltaic response is anticipated with the maximum photovoltage VOC = 16 mV and a positive signal of the ISC = 60 µA (400 nm, 90.4 Wcm-2) in the absence of an external electric field. The maximum values of both R and EQE were found to be 98 mAW-1 and 30%, respectively. Our findings are distinctive features of the photocurrent responses caused by in-plane polarity and its potential from a wide pool of established TMD-based nanomaterials and a cutting-edge approach to optimize the efficiency in converting photons-to-electricity for power harvesting optoelectronics devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA