Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Mater Eng ; 28(4): 443-456, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28869431

RESUMEN

Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes' case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes' hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes' hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes' hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes' disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.


Asunto(s)
Cabeza Femoral/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/fisiopatología , Enfermedad de Legg-Calve-Perthes/diagnóstico por imagen , Enfermedad de Legg-Calve-Perthes/fisiopatología , Fenómenos Biomecánicos , Humanos , Imagen por Resonancia Magnética , Soporte de Peso
2.
Biomed Mater Eng ; 27(1): 49-62, 2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27175467

RESUMEN

Treatment for severe scoliosis is usually attained when the scoliotic spine is deformed and fixed by implant rods. Investigation of the intraoperative changes of implant rod shape in three-dimensions is necessary to understand the biomechanics of scoliosis correction, establish consensus of the treatment, and achieve the optimal outcome. The objective of this study was to measure the intraoperative three-dimensional geometry and deformation of implant rod during scoliosis corrective surgery.A pair of images was obtained intraoperatively by the dual camera system before rotation and after rotation of rods during scoliosis surgery. The three-dimensional implant rod geometry before implantation was measured directly by the surgeon and after surgery using a CT scanner. The images of rods were reconstructed in three-dimensions using quintic polynomial functions. The implant rod deformation was evaluated using the angle between the two three-dimensional tangent vectors measured at the ends of the implant rod.The implant rods at the concave side were significantly deformed during surgery. The highest rod deformation was found after the rotation of rods. The implant curvature regained after the surgical treatment.Careful intraoperative rod maneuver is important to achieve a safe clinical outcome because the intraoperative forces could be higher than the postoperative forces. Continuous scoliosis correction was observed as indicated by the regain of the implant rod curvature after surgery.


Asunto(s)
Tornillos Óseos , Escoliosis/cirugía , Columna Vertebral/cirugía , Adolescente , Fenómenos Biomecánicos , Humanos , Periodo Posoperatorio , Diseño de Prótesis , Escoliosis/patología , Columna Vertebral/patología , Resultado del Tratamiento
3.
Spine J ; 14(8): 1432-9, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24275616

RESUMEN

BACKGROUND CONTEXT: Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. RESULTS: The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8°, respectively. The average preoperative and postoperative implant rod angle of curvature at the convex side was 25.5° and 23.9°, respectively. A significant relationship was found between the degree of rod deformation and preoperative implant rod angle of curvature (r=0.60, p<.005). The implant rods at the convex side of all patients did not have significant deformation. The results indicate that the postoperative sagittal outcome could be predicted from the initial rod shape. CONCLUSIONS: Changes in implant rod angle of curvature may lead to over- or undercorrection of the sagittal curve. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than the convex side.


Asunto(s)
Fijadores Internos , Escoliosis/cirugía , Adolescente , Fenómenos Biomecánicos , Tornillos Óseos , Niño , Femenino , Humanos , Masculino , Procedimientos Ortopédicos/métodos , Prótesis e Implantes , Falla de Prótesis , Radiografía , Estudios Retrospectivos , Escoliosis/diagnóstico por imagen , Fusión Vertebral/métodos , Adulto Joven
4.
Clin Biomech (Bristol, Avon) ; 28(2): 122-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23273729

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a complex spinal pathology characterized as a three-dimensional spine deformity combined with vertebral rotation. Various surgical techniques for correction of severe scoliotic deformity have evolved and became more advanced in applying the corrective forces. The objective of this study was to investigate the relationship between corrective forces acting on deformed rods and degree of scoliosis correction. METHODS: Implant rod geometries of six adolescent idiopathic scoliosis patients were measured before and after surgery. An elasto-plastic finite element model of the implant rod before surgery was reconstructed for each patient. An inverse method based on Finite Element Analysis was used to apply forces to the implant rod model such that it was deformed the same after surgery. Relationship between the magnitude of corrective forces and degree of correction expressed as change of Cobb angle was evaluated. The effects of screw configuration on the corrective forces were also investigated. FINDINGS: Corrective forces acting on rods and degree of correction were not correlated. Increase in number of implant screws tended to decrease the magnitude of corrective forces but did not provide higher degree of correction. Although greater correction was achieved with higher screw density, the forces increased at some level. INTERPRETATION: The biomechanics of scoliosis correction is not only dependent to the corrective forces acting on implant rods but also associated with various parameters such as screw placement configuration and spine stiffness. Considering the magnitude of forces, increasing screw density is not guaranteed as the safest surgical strategy.


Asunto(s)
Fijadores Internos , Procedimientos Ortopédicos/métodos , Escoliosis/cirugía , Escoliosis/terapia , Estrés Mecánico , Adolescente , Fenómenos Biomecánicos , Tornillos Óseos , Análisis de Elementos Finitos , Humanos , Masculino , Procedimientos Ortopédicos/instrumentación , Rotación , Columna Vertebral/cirugía , Torsión Mecánica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA