Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041752

RESUMEN

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Asunto(s)
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell ; 133(3): 427-39, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455984

RESUMEN

Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Humanos , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Ingeniería de Proteínas , Huso Acromático/metabolismo
3.
Bioessays ; 39(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28582586

RESUMEN

At metaphase in mitotic cells, pulling forces at the kinetochore-microtubule interface create tension by stretching the centromeric chromatin between oppositely oriented sister kinetochores. This tension is important for stabilizing the end-on kinetochore microtubule attachment required for proper bi-orientation of sister chromosomes as well as for satisfaction of the Spindle Assembly Checkpoint and entry into anaphase. How force is coupled by proteins to kinetochore microtubules and resisted by centromere stretch is becoming better understood as many of the proteins involved have been identified. Recent application of genetically encoded fluorescent tension sensors within the mechanical linkage between the centromere and kinetochore microtubules are beginning to reveal - from live cell assays - protein specific contributions that are functionally important.


Asunto(s)
Cinetocoros/fisiología , Anafase/fisiología , Animales , Cromatina/fisiología , Segregación Cromosómica/fisiología , Humanos , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología
4.
J Biol Chem ; 292(42): 17178-17189, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28900032

RESUMEN

The mitotic spindle is composed of dynamic microtubules and associated proteins that together direct chromosome movement during mitosis. The spindle plays a vital role in accurate chromosome segregation fidelity and is a therapeutic target in cancer. Nevertheless, the molecular mechanisms by which many spindle-associated proteins function remains unknown. The nucleolar and spindle-associated protein NUSAP1 is a microtubule-binding protein implicated in spindle stability and chromosome segregation. We show here that NUSAP1 localizes to dynamic spindle microtubules in a unique chromosome-centric pattern, in the vicinity of overlapping microtubules, during metaphase and anaphase of mitosis. Mass spectrometry-based analysis of endogenous NUSAP1 interacting proteins uncovered a cell cycle-regulated interaction between the RanBP2-RanGAP1-UBC9 SUMO E3 ligase complex and NUSAP1. Like NUSAP1 depletion, RanBP2 depletion impaired the response of cells to the microtubule poison Taxol. NUSAP1 contains a conserved SAP domain (SAF-A/B, Acinus, and PIAS). SAP domains are common among many other SUMO E3s, and are implicated in substrate recognition and ligase activity. We speculate that NUSAP1 contributes to accurate chromosome segregation by acting as a co-factor for RanBP2-RanGAP1-UBC9 during cell division.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Segregación Cromosómica/efectos de los fármacos , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Paclitaxel/farmacología , Dominios Proteicos , Huso Acromático/genética , Huso Acromático/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
5.
Nat Chem Biol ; 12(6): 411-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27043190

RESUMEN

Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Humanos , Quinasa Tipo Polo 1
6.
Genes Dev ; 24(9): 957-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20439434

RESUMEN

The spindle checkpoint generates a "wait anaphase" signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubule-attached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Silenciador del Gen/fisiología , Genes cdc/fisiología , Cinetocoros/metabolismo , Mutación Puntual/genética , Secuencias de Aminoácidos/genética , Proteínas de Ciclo Celular , Cromosomas/genética , Complejo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
7.
Nat Cell Biol ; 8(6): 581-5, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16715078

RESUMEN

Kinetochore attachment to spindle microtubule plus-ends is necessary for accurate chromosome segregation during cell division in all eukaryotes. The centromeric DNA of each chromosome is linked to microtubule plus-ends by eight structural-protein complexes. Knowing the copy number of each of these complexes at one kinetochore-microtubule attachment site is necessary to understand the molecular architecture of the complex, and to elucidate the mechanisms underlying kinetochore function. We have counted, with molecular accuracy, the number of structural protein complexes in a single kinetochore-microtubule attachment using quantitative fluorescence microscopy of GFP-tagged kinetochore proteins in the budding yeast Saccharomyces cerevisiae. We find that relative to the two Cse4p molecules in the centromeric histone, the copy number ranges from one or two for inner kinetochore proteins such as Mif2p, to 16 for the DAM-DASH complex at the kinetochore-microtubule interface. These counts allow us to visualize the overall arrangement of a kinetochore-microtubule attachment. As most of the budding yeast kinetochore proteins have homologues in higher eukaryotes, including humans, this molecular arrangement is likely to be replicated in more complex kinetochores that have multiple microtubule attachments.


Asunto(s)
Cinetocoros/química , Microtúbulos/química , Complejos Multiproteicos/química , Sitios de Unión , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Proteínas Fluorescentes Verdes , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Huso Acromático
8.
Curr Biol ; 16(8): 755-66, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16631582

RESUMEN

BACKGROUND: Mad1 and Mad2 are constituents of the spindle-assembly checkpoint, a device coupling the loss of sister-chromatid cohesion at anaphase to the completion of microtubule attachment of the sister chromatids at metaphase. Fluorescence recovery after photobleaching (FRAP) revealed that the interaction of cytosolic Mad2 with kinetochores is highly dynamic, suggesting a mechanism of catalytic activation of Mad2 at kinetochores followed by its release in a complex with Cdc20. The recruitment of cytosolic Mad2 to kinetochores has been attributed to a stable receptor composed of a distinct pool of Mad2 tightly bound to Mad1. Whether specifically this interaction accounts for the kinetochore dynamics of Mad2 is currently unknown. RESULTS: To gain a precise molecular understanding of the interaction of Mad2 with kinetochores, we reconstituted the putative Mad2 kinetochore receptor and developed a kinetochore recruitment assay with purified components. When analyzed by FRAP in vitro, this system faithfully reproduced the previously described in vivo dynamics of Mad2, providing an unequivocal molecular account of the interaction of Mad2 with kinetochores. Using the same approach, we dissected the mechanism of action of p31(comet), a spindle-assembly checkpoint inhibitor. CONCLUSIONS: In vitro FRAP is a widely applicable approach to dissecting the molecular bases of the interaction of a macromolecule with an insoluble cellular scaffold. The combination of in vitro fluorescence recovery after photobleaching with additional fluorescence-based assays in vitro can be used to unveil mechanism, stoichiometry, and kinetic parameters of a macromolecular interaction, all of which are important for modeling protein interaction networks.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Cinetocoros/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Unión al Calcio/química , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Proteínas Mad2 , Proteínas Nucleares/metabolismo , Proteínas Represoras/química , Huso Acromático/metabolismo
9.
J Cell Biol ; 162(3): 377-82, 2003 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-12900391

RESUMEN

Microtubule plus ends dynamically attach to kinetochores on mitotic chromosomes. We directly imaged this dynamic interface using high resolution fluorescent speckle microscopy and direct labeling of kinetochores in Xenopus extract spindles. During metaphase, kinetochores were stationary and under tension while plus end polymerization and poleward microtubule flux (flux) occurred at velocities varying from 1.5-2.5 micro m/min. Because kinetochore microtubules polymerize at metaphase kinetochores, the primary source of kinetochore tension must be the spindle forces that produce flux and not a kinetochore-based mechanism. We infer that the kinetochore resists translocation of kinetochore microtubules through their attachment sites, and that the polymerization state of the kinetochore acts a "slip-clutch" mechanism that prevents detachment at high tension. At anaphase onset, kinetochores switched to depolymerization of microtubule plus ends, resulting in chromosome-to-pole rates transiently greater than flux. Kinetochores switched from persistent depolymerization to persistent polymerization and back again during anaphase, bistability exhibited by kinetochores in vertebrate tissue cells. These results provide the most complete description of spindle microtubule poleward flux to date, with important implications for the microtubule-kinetochore interface and for how flux regulates kinetochore function.


Asunto(s)
Cromosomas/fisiología , Células Eucariotas/metabolismo , Cinetocoros/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología , Anafase/fisiología , Animales , Fenómenos Biomecánicos , Extractos Celulares , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Eucariotas/citología , Femenino , Metafase/fisiología , Oocitos , Polímeros/metabolismo , Xenopus laevis
10.
Curr Biol ; 15(3): 214-25, 2005 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-15694304

RESUMEN

BACKGROUND: The spindle assembly checkpoint (SAC) imparts fidelity to chromosome segregation by delaying anaphase until all sister chromatid pairs have become bipolarly attached. Mad2 is a component of the SAC effector complex that sequesters Cdc20 to halt anaphase. In prometaphase, Mad2 is recruited to kinetochores with the help of Mad1, and it is activated to bind Cdc20. These events are linked to the existence of two distinct conformers of Mad2: a closed conformer bound to its kinetochore receptor Mad1 or its target in the checkpoint Cdc20 and an open conformer unbound to these ligands. RESULTS: We investigated the mechanism of Mad2 recruitment to the kinetochore during checkpoint activation and subsequent transfer to Cdc20. We report that a closed conformer of Mad2 constitutively bound to Mad1, rather than Mad1 itself, is the kinetochore receptor for cytosolic open Mad2 and show that the interaction of open and closed Mad2 conformers is essential to sustain the SAC. CONCLUSIONS: We propose that closed Mad2 bound to Mad1 represents a template for the conversion of open Mad2 into closed Mad2 bound to Cdc20. This simple model, which we have named the "Mad2 template" model, predicts a mechanism for cytosolic propagation of the spindle checkpoint signal away from kinetochores.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Genes cdc/fisiología , Modelos Biológicos , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Huso Acromático/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Citosol/metabolismo , Escherichia coli , Citometría de Flujo , Células HeLa , Humanos , Inmunoprecipitación , Isomerismo , Cinetocoros/metabolismo , Proteínas Mad2 , Proteínas Nucleares , Plásmidos/genética , Interferencia de ARN
11.
Elife ; 72018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323636

RESUMEN

Two-color fluorescence co-localization in 3D (three-dimension) has the potential to achieve accurate measurements at the nanometer length scale. Here, we optimized a 3D fluorescence co-localization method that uses mean values for chromatic aberration correction to yield the mean separation with ~10 nm accuracy between green and red fluorescently labeled protein epitopes within single human kinetochores. Accuracy depended critically on achieving small standard deviations in fluorescence centroid determination, chromatic aberration across the measurement field, and coverslip thickness. Computer simulations showed that large standard deviations in these parameters significantly increase 3D measurements from their true values. Our 3D results show that at metaphase, the protein linkage between CENP-A within the inner kinetochore and the microtubule-binding domain of the Ndc80 complex within the outer kinetochore is on average ~90 nm. The Ndc80 complex appears fully extended at metaphase and exhibits the same subunit structure in vivo as found in vitro by crystallography.


Asunto(s)
Proteína A Centromérica/análisis , Imagenología Tridimensional/métodos , Cinetocoros/química , Metafase , Microscopía Confocal/métodos , Proteínas Nucleares/análisis , Imagen Óptica/métodos , Proteínas del Citoesqueleto , Células HeLa , Humanos
12.
Curr Biol ; 28(17): 2697-2704.e3, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30174190

RESUMEN

Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.


Asunto(s)
Segregación Cromosómica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Cinesinas/metabolismo , Proteína Fosfatasa 1/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos , Regulación Enzimológica de la Expresión Génica , Cinesinas/genética , Cinetocoros , Proteína Fosfatasa 1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Biol Cell ; 14(5): 2192-200, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12802085

RESUMEN

In many important organisms, including many algae and most fungi, the nuclear envelope does not disassemble during mitosis. This fact raises the possibility that mitotic onset and/or exit might be regulated, in part, by movement of important mitotic proteins into and out of the nucleoplasm. We have used two methods to determine whether tubulin levels in the nucleoplasm are regulated in the fungus Aspergillus nidulans. First, we have used benomyl to disassemble microtubules and create a pool of free tubulin that can be readily observed by immunofluorescence. We find that tubulin is substantially excluded from interphase nuclei, but is present in mitotic nuclei. Second, we have observed a green fluorescent protein/alpha-tubulin fusion in living cells by time-lapse spinning-disk confocal microscopy. We find that tubulin is excluded from interphase nuclei, enters the nucleus seconds before the mitotic spindle begins to form, and is removed from the nucleoplasm during the M-to-G1 transition. Our data indicate that regulation of intranuclear tubulin levels plays an important, perhaps essential, role in the control of mitotic spindle formation in A. nidulans. They suggest that regulation of protein movement into the nucleoplasm may be important for regulating mitotic onset in organisms with intranuclear mitosis.


Asunto(s)
Aspergillus/fisiología , Núcleo Celular/metabolismo , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo , Aspergillus/efectos de los fármacos , Benomilo/farmacología , Núcleo Celular/efectos de los fármacos , Fungicidas Industriales/farmacología , Genes Reporteros , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/efectos de los fármacos , Tubulina (Proteína)/efectos de los fármacos , Tubulina (Proteína)/genética
14.
Nat Cell Biol ; 18(4): 382-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974660

RESUMEN

The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes.


Asunto(s)
Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Luminiscentes , Microtúbulos/metabolismo , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Imagen de Lapso de Tiempo
15.
Nat Commun ; 6: 8161, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26345214

RESUMEN

The Ndc80 complex, which mediates end-on attachment of spindle microtubules, is linked to centromeric chromatin in human cells by two inner kinetochore proteins, CENP-T and CENP-C. Here to quantify their relative contributions to Ndc80 recruitment, we combine measurements of kinetochore protein copy number with selective protein depletion assays. This approach reveals about 244 Ndc80 complexes per human kinetochore (∼14 per kinetochore microtubule), 215 CENP-C, 72 CENP-T and only 151 Ndc80s as part of the KMN protein network (1:1:1 Knl1, Mis12 and Ndc80 complexes). Each CENP-T molecule recruits ∼2 Ndc80 complexes; one as part of a KMN network. In contrast, ∼40% of CENP-C recruits only a KMN network. Replacing the CENP-C domain that binds KMN with the CENP-T domain that recruits both an Ndc80 complex and KMN network yielded functional kinetochores. These results provide a quantitative picture of the linkages between centromeric chromatin and the microtubule-binding Ndc80 complex at the human kinetochore.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Immunoblotting , Imagen Óptica
16.
Dev Cell ; 30(6): 717-30, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25268173

RESUMEN

Constitutive centromere-associated network (CCAN) proteins, particularly CENP-C, CENP-T, and the CENP-H/-I complex, mechanically link CENP-A-containing centromeric chromatin within the inner kinetochore to outer kinetochore proteins, such as the Ndc80 complex, that bind kinetochore microtubules. Accuracy of chromosome segregation depends critically upon Aurora B phosphorylation of Ndc80/Hec1. To determine how CCAN protein architecture mechanically constrains intrakinetochore stretch between CENP-A and Ndc80/Hec1 for proper Ndc80/Hec1 phosphorylation, we used super-resolution fluorescence microscopy and selective protein depletion. We found that at bi-oriented chromosomes in late prometaphase cells, CENP-T is stretched ∼16 nm to the inner end of Ndc80/Hec1, much less than expected for full-length CENP-T. Depletion of various CCAN linker proteins induced hyper-intrakinetochore stretch (an additional 20-60 nm) with corresponding significant decreases in Aurora B phosphorylation of Ndc80/Hec1. Thus, proper intrakinetochore stretch is required for normal kinetochore function and depends critically on all the CCAN mechanical linkers to the Ndc80 complex.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa B/metabolismo , Proteína A Centromérica , Proteínas del Citoesqueleto , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica
17.
Methods Cell Biol ; 114: 179-210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23931508

RESUMEN

This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Proteínas Mad2/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/instrumentación , Microscopía de Contraste de Fase/métodos , Microtúbulos/metabolismo , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/instrumentación , Xenopus
18.
J Cell Biol ; 188(4): 481-9, 2010 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-20176922

RESUMEN

Several recent models for spindle length regulation propose an elastic pole to pole spindle matrix that is sufficiently strong to bear or antagonize forces generated by microtubules and microtubule motors. We tested this hypothesis using microneedles to skewer metaphase spindles in Xenopus laevis egg extracts. Microneedle tips inserted into a spindle just outside the metaphase plate resulted in spindle movement along the interpolar axis at a velocity slightly slower than microtubule poleward flux, bringing the nearest pole toward the needle. Spindle velocity decreased near the pole, which often split apart slowly, eventually letting the spindle move completely off the needle. When two needles were inserted on either side of the metaphase plate and rapidly moved apart, there was minimal spindle deformation until they reached the poles. In contrast, needle separation in the equatorial direction rapidly increased spindle width as constant length spindle fibers pulled the poles together. These observations indicate that an isotropic spindle matrix does not make a significant mechanical contribution to metaphase spindle length determination.


Asunto(s)
Huso Acromático/metabolismo , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Agujas , Huso Acromático/efectos de los fármacos , Xenopus
19.
J Cell Biol ; 184(3): 373-81, 2009 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-19193623

RESUMEN

Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a "wait anaphase" signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier-mCherry and Ndc80-green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation.


Asunto(s)
Centrómero/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centrómero/ultraestructura , Colchicina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epítopos/metabolismo , Cinetocoros/ultraestructura , Paclitaxel/metabolismo , Fosforilación , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/ultraestructura , Estrés Mecánico , Moduladores de Tubulina/metabolismo
20.
Curr Biol ; 19(14): 1210-5, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19540121

RESUMEN

During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle, because it locally activates critical spindle assembly factors. Here, we show in Xenopus laevis egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin and a CPC-dependent signal predominantly generated from centromeric chromatin.


Asunto(s)
División Celular/fisiología , Cromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Proteína de Unión al GTP ran/metabolismo , Animales , Aurora Quinasas , Centrosoma/fisiología , Cinética , Cinetocoros/fisiología , Microscopía Fluorescente , Microesferas , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA