Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Great Lakes Res ; 48(3): 849-855, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36591538

RESUMEN

Efforts to make research environments more inclusive and diverse are beneficial for the next generation of Great Lakes researchers. The global COVID-19 pandemic introduced circumstances that forced graduate programs and academic institutions to re-evaluate and promptly pivot research traditions, such as weekly seminar series, which are critical training grounds and networking opportunities for early career researchers (ECRs). While several studies have established that academics with funded grants and robust networks were better able to weather the abrupt changes in research and closures of institutions, ECRs did not. In response, both existing and novel partnerships provided a resilient network to support ECRs at an essential stage of their career development. Considering these challenges, we sought to re-frame the seminar series as a virtual collaboration for ECRs. Two interdisciplinary graduate programs, located in different countries (Windsor, Canada, and Detroit, USA) invested in a year-long partnership to deliver a virtual-only seminar series that intentionally promoted: the co-creation of protocols and co-led roles, the amplification of justice, equity, diversity and inclusion throughout all aspects of organization and representation, engagement and amplification through social media, the integration of social, scientific and cultural research disciplines, all of which collectively showcased the capacity of our ECRs to lead, organize and communicate. This approach has great potential for application across different communities to learn through collaboration and sharing, and to empower the next generation to find new ways of working together.

2.
Water Res ; 247: 120816, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952399

RESUMEN

As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.


Asunto(s)
Cianobacterias , Microbiota , Lagos/microbiología , Microcistinas/metabolismo , Arena , Cianobacterias/metabolismo , Nitrógeno/metabolismo , Ontario
3.
Chemosphere ; 272: 129873, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33592515

RESUMEN

Cyanobacterial blooms and the associated hepatotoxins produced (e.g., microcystins, MCs) create a significant human health risk in freshwater lakes around the world, including Lake Erie. Though various physical and chemical treatment options are utilized, these are costly and their effectiveness decreases when other organics are present. Laboratory studies have identified a remediation option based on a mlr gene operon that can systematically degrade this toxin; however, studies on Lake Erie have been unable to amplify mlr genes from MC-degrading bacteria. These results suggest that either existing primers may be inefficient for broad identification of the mlr genes or that MC degradation genes and/or pathways may vary among bacterial taxa. To investigate the dynamics of the Lake Erie microbial community involved in the degradation of microcystin-LR (MC-LR), a flow-through column experiment using collected beach sand was conducted over a period of six weeks. Increasing concentrations of lake water spiked with MC-LR were continuously delivered to both biotic and abiotic (sterilized) sand columns, with influent and effluent MC-LR concentrations measured by LC-MS/MS. Despite the toxin concentrations far exceeding natural conditions during a bloom event (maximum dosage = 15.4 µg/L), MC-LR was completely removed within 21 h of contact time in the biotic columns. Stimulation of community taxa during the degradation process included Burkholderiaceae, Illumatobacteraceae, Pseudomonadaceae, Rhodocyclaceae and Nitrosomonadaceae. The overall results suggest several critical species may be required for the most complete and effective degradation of MC-LR.


Asunto(s)
Lagos , Microcistinas , Cromatografía Liquida , Humanos , Toxinas Marinas , Arena , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA