RESUMEN
Mounting effective immunity against pathogens and tumours relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. Fatty-acid-binding protein 5 (FABP5) has a key role in this process by coordinating the efficient import and trafficking of lipids that fuel mitochondrial respiration to sustain the bioenergetic requirements of protective CD8+ T cells4,5. However, the mechanisms that govern this immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer transgelin 2 (TAGLN2) is necessary for optimal fatty acid uptake, mitochondrial respiration and anticancer function in CD8+ T cells. TAGLN2 interacts with FABP5 to facilitate its cell surface localization and function in activated CD8+ T cells. Analyses of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses induced by the tumour microenvironment repress TAGLN2 in infiltrating CD8+ T cells, thereby enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells increased their lipid uptake, mitochondrial respiration and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumour-induced ER stress and demonstrated therapeutic efficacy in mice with metastatic ovarian cancer. Our study establishes the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.
RESUMEN
High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)-deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Carcinoma Epitelial de Ovario/dietoterapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BLRESUMEN
Globoid cell leukodystrophy (GLD) is an inherited lysosomal storage disease caused by ß-galactocerebrosidase (GALC) deficiency. Gene therapy (GT) should provide rapid, extensive and lifetime GALC supply in central nervous system (CNS) tissues to prevent or halt irreversible neurologic progression. Here we used a lentiviral vector (LV) to transfer a functional GALC gene in the brain of Twitcher mice, a severe GLD model. A single injection of LV.GALC in the external capsule of Twitcher neonates resulted in robust transduction of neural cells with minimal and transient activation of inflammatory and immune response. Importantly, we documented a proficient transduction of proliferating and post-mitotic oligodendroglia, a relevant target cell type in GLD. GALC activity (30-50% of physiological levels) was restored in the whole CNS of treated mice as early as 8 days post-injection. The early and stable enzymatic supply ensured partial clearance of storage and reduction of psychosine levels, translating in amelioration of histopathology and enhanced lifespan. At 6 months post-injection in non-affected mice, LV genome persisted exclusively in the injected region, where transduced cells overexpressed GALC. Integration site analysis in transduced brain tissues showed no aberrant clonal expansion and preferential targeting of neural-specific genes. This study establishes neonatal LV-mediated intracerebral GT as a rapid, effective and safe therapeutic intervention to correct CNS pathology in GLD and provides a strong rationale for its application in this and similar leukodystrophies, alone or in combination with therapies targeting the somatic pathology, with the final aim of providing an effective and timely treatment of these global disorders.
Asunto(s)
Sistema Nervioso Central/patología , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/terapia , beta-Galactosidasa/metabolismo , Animales , Animales Recién Nacidos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Cápsula Externa , Terapia Genética , Vectores Genéticos/uso terapéutico , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/genética , Ratones , Ratones Endogámicos C57BL , Transducción Genética , beta-Galactosidasa/genéticaRESUMEN
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in â¼50% of treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
RESUMEN
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Neutrófilos , Neoplasias Ováricas , Receptor de Muerte Celular Programada 1 , Proteínas Serina-Treonina Quinasas , Femenino , Animales , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Ratones , Humanos , Estrés del Retículo Endoplásmico/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/metabolismo , Línea Celular Tumoral , Clasificación del Tumor , Escape del Tumor/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.
Asunto(s)
Inmunidad Innata , Quelantes del Hierro , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Humanos , Animales , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/farmacología , Ratones , Inmunidad Innata/efectos de los fármacos , Línea Celular Tumoral , Deferiprona/uso terapéutico , Deferiprona/farmacología , Metástasis de la Neoplasia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacosRESUMEN
Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1ß, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.
Asunto(s)
Candidiasis , Proteínas Serina-Treonina Quinasas , Humanos , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico , Candida albicans , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias , Humanos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas , Neoplasias/patología , Inositol , Microambiente TumoralRESUMEN
Neutrophils are not only crucial immune cells for the neutralization of pathogens during infections, but they are also key players in tissue repair and cancer. Several methods are available to investigate the in vivo role of neutrophils in these conditions, including the depletion of neutrophils with neutralizing antibodies against Ly6G, or the blockade of neutrophil recruitment with CXCR2 inhibitors. A limited number of transgenic mouse models were generated that rely on the disruption of genes important for neutrophil development or on the injection of diphtheria toxin to induce neutrophil ablation. However, these methods have various limitations, including a lack of neutrophil specificity, a lack of long-term efficacy, or a lack of the ability to conditionally deplete neutrophils. Therefore, we generated a transgenic mouse model for the inducible and reversible ablation of neutrophils using the ATTAC (Apoptosis Through Targeted Activation of Caspase 8) approach. With the ATTAC strategy, which relies on the expression of the caspase 8-FKBP fusion protein, apoptosis is induced upon administration of a chemical dimerizer (FK506 analogue) that facilitates the dimerization and activation of caspase 8. In order to achieve specific neutrophil depletion, we cloned the ATTAC construct under the human migration inhibitory factor-related protein 8 (hMRP8) promotor. The newly generated hMRP8-ATTAC mice expressed high levels of the transgene in neutrophils, and, as a consequence, dimerizer injection induced an efficient reduction of neutrophil levels in all the organs analyzed under homeostatic conditions. In situations with extensive pressure on the bone marrow to mobilize neutrophils, for instance in the context of cancer, effective neutrophil depletion in this model requires further optimization. In conclusion, we here describe the generation and characterization of a new transgenic model for conditional neutrophil ablation and highlight the need to improve the ATTAC strategy for the depletion of large numbers of rapidly generated short-lived cells, such as neutrophils.
Asunto(s)
Neoplasias , Neutrófilos , Animales , Caspasa 8/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neoplasias/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismoRESUMEN
While regulatory T cells (Tregs) and macrophages have been recognized as key orchestrators of cancer-associated immunosuppression, their cellular crosstalk within tumors has been poorly characterized. Here, using spontaneous models for breast cancer, we demonstrate that tumor-associated macrophages (TAMs) contribute to the intratumoral accumulation of Tregs by promoting the conversion of conventional CD4+ T cells (Tconvs) into Tregs. Mechanistically, two processes were identified that independently contribute to this process. While TAM-derived TGF-ß directly promotes the conversion of CD4+ Tconvs into Tregsin vitro, we additionally show that TAMs enhance PD-1 expression on CD4+ T cells. This indirectly contributes to the intratumoral accumulation of Tregs, as loss of PD-1 on CD4+ Tconvs abrogates intratumoral conversion of adoptively transferred CD4+ Tconvs into Tregs. Combined, this study provides insights into the complex immune cell crosstalk between CD4+ T cells and TAMs in the tumor microenvironment of breast cancer, and further highlights that therapeutic exploitation of macrophages may be an attractive immune intervention to limit the accumulation of Tregs in breast tumors.
Asunto(s)
Neoplasias de la Mama , Linfocitos T Reguladores , Femenino , Humanos , Tolerancia Inmunológica , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Macrófagos Asociados a TumoresRESUMEN
Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE: This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.
Asunto(s)
Interferón Tipo I , Lisofosfolípidos , Neoplasias Ováricas , Femenino , Humanos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Microambiente TumoralRESUMEN
In this issue, Du and colleagues uncover that optineurin functions as a key regulator of IFNγ receptor (IFNGR1) stability in malignant cells. Loss of optineurin in colorectal cancer cells causes IFNGR1 degradation, leading to impaired IFNγ signaling, decreased MHC-I expression, and enhanced ability to evade adaptive immune control.See related article by Du et al., p. 1826.
Asunto(s)
Neoplasias , Receptores de Interferón , Neoplasias/genéticaRESUMEN
Dendritic cells (DCs) are critical for bridging innate and adaptive immunity. They do so by presenting antigens to T cells, and by expressing diverse molecules that further promote T cell activation, differentiation and memory formation. During this process, intracellular and extracellular factors can perturb the protein-folding capacity of endoplasmic reticulum (ER) and induce a cellular state of "ER stress," which is controlled and resolved by the unfolded protein response (UPR). Interestingly, various studies have shown that DCs can activate UPR-related pathways even in the absence of global ER stress, and that this process can modulate their normal activity. In other settings, such as cancer, adverse microenvironmental conditions have been demonstrated to evoke severe ER stress and persistent activation of the UPR in tumor-infiltrating DCs. This process disrupts their metabolism and local antigen-presenting capacity, hence impeding the initiation and maintenance of anti-cancer immunity. Here, we review recent findings on how canonical and non-canonical UPR activation impacts DC immunobiology at the steady-state, upon activation via pattern recognition receptors, and under diverse pathological conditions. We also discuss the potential therapeutic implications that targeting the UPR in DCs may have in the context of cancer and in other pathologies such as graft-versus-host disease.
Asunto(s)
Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico/inmunología , Animales , Células Dendríticas/patología , Humanos , Respuesta de Proteína DesplegadaRESUMEN
Tumor-associated macrophages (TAMs) are frequently the most abundant immune cells in cancers and are associated with poor survival. Here, we generated TAM molecular signatures from K14cre;Cdh1flox/flox;Trp53flox/flox (KEP) and MMTV-NeuT (NeuT) transgenic mice that resemble human invasive lobular carcinoma (ILC) and HER2+ tumors, respectively. Determination of TAM-specific signatures requires comparison with healthy mammary tissue macrophages to avoid overestimation of gene expression differences. TAMs from the two models feature a distinct transcriptomic profile, suggesting that the cancer subtype dictates their phenotype. The KEP-derived signature reliably correlates with poor overall survival in ILC but not in triple-negative breast cancer patients, indicating that translation of murine TAM signatures to patients is cancer subtype dependent. Collectively, we show that a transgenic mouse tumor model can yield a TAM signature relevant for human breast cancer outcome prognosis and provide a generalizable strategy for determining and applying immune cell signatures provided the murine model reflects the human disease.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Neoplasias Mamarias Animales/patología , Transcripción Genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/genética , Ratones Endogámicos BALB C , Ratones Transgénicos , Fenotipo , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Transcriptoma/genética , Resultado del TratamientoRESUMEN
Recent studies have revealed a role for macrophages and neutrophils in limiting chemotherapy efficacy; however, the mechanisms underlying the therapeutic benefit of myeloid-targeting agents in combination with chemotherapy are incompletely understood. Here, we show that targeting tumour-associated macrophages by colony-stimulating factor-1 receptor (CSF-1R) blockade in the K14cre;Cdh1F/F;Trp53F/F transgenic mouse model for breast cancer stimulates intratumoural type I interferon (IFN) signalling, which enhances the anticancer efficacy of platinum-based chemotherapeutics. Notably, anti-CSF-1R treatment also increased intratumoural expression of type I IFN-stimulated genes in patients with cancer, confirming that CSF-1R blockade is a powerful strategy to trigger an intratumoural type I IFN response. By inducing an inflamed, type I IFN-enriched tumour microenvironment and by further targeting immunosuppressive neutrophils during cisplatin therapy, antitumour immunity was activated in this poorly immunogenic breast cancer mouse model. These data illustrate the importance of breaching multiple layers of immunosuppression during cytotoxic therapy to successfully engage antitumour immunity in breast cancer.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Interferón Tipo I/fisiología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/secundario , Ratones , Ratones Noqueados , Ratones TransgénicosRESUMEN
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1ß in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell - IL17 - neutrophil axis.
RESUMEN
It is well established that tumors evolve together with nonmalignant cells, such as fibroblasts, endothelial cells, and immune cells. These cells constantly entangle and interact with each other creating the tumor microenvironment. Immune cells can exert both tumor-promoting and tumor-protective functions. Detailed phenotypic and functional characterization of intra-tumoral immune cell subsets has become increasingly important in the field of cancer biology and cancer immunology. In this chapter, we describe a method for isolation of viable and pure immune cell subsets from freshly isolated murine solid tumors and organs. First, we describe a protocol for the generation of single-cell suspensions from tumors and organs using mechanical and enzymatic strategies. In addition, we describe how immune cell subsets can be purified by consecutive magnetic cell sorting and multi-parameter flow cytometry-based cell sorting.
Asunto(s)
Citometría de Flujo , Separación Inmunomagnética , Neoplasias/inmunología , Neoplasias/patología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Citometría de Flujo/métodos , Separación Inmunomagnética/métodos , Inmunofenotipificación , Ratones , Fenotipo , Microambiente Tumoral/inmunologíaRESUMEN
Cancer immunotherapy is gaining momentum in the clinic. The current challenge is to understand why a proportion of cancer patients do not respond to cancer immunotherapy, and how this can be translated into the rational design of combinatorial cancer immunotherapy strategies aimed at maximizing success of immunotherapy. Here, we discuss how tumors orchestrate an immunosuppressive microenvironment, which contributes to their escape from immune attack. Relieving the immunosuppressive networks in cancer patients is an attractive strategy to extend the clinical success of cancer immunotherapy. Since the clinical availability of drugs specifically targeting immunosuppressive cells or mediators is still limited, an alternative strategy is to use conventional chemotherapy drugs with immunomodulatory properties to improve cancer immunotherapy. We summarize the preclinical and clinical studies that illustrate how the anti-tumor T cell response can be enhanced by chemotherapy-induced relief of immunosuppressive networks. Treatment strategies aimed at combining chemotherapy-induced relief of immunosuppression and T cell-boosting checkpoint inhibitors provide an attractive and clinically feasible approach to overcome intrinsic and acquired resistance to cancer immunotherapy, and to extend the clinical success of cancer immunotherapy.