Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Carcinog ; 58(9): 1551-1570, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31190430

RESUMEN

Extracellular signal-regulated kinase 1/2 (ERK1/2) constitute a point of convergence for complex signaling events that regulate essential cellular processes, including proliferation and survival. As such, dysregulation of the ERK signaling pathway is prevalent in many cancers. In the case of BRAF-V600E mutant melanoma, ERK inhibition has emerged as a viable clinical approach to abrogate signaling through the ERK pathway, even in cases where MEK and Raf inhibitor treatments fail to induce tumor regression due to resistance mechanisms. Several ERK inhibitors that target the active site of ERK have reached clinical trials, however, many critical ERK interactions occur at other potentially druggable sites on the protein. Here we discuss the role of ERK signaling in cell fate, in driving melanoma, and in resistance mechanisms to current BRAF-V600E melanoma treatments. We explore targeting ERK via a distinct site of protein-protein interaction, known as the D-recruitment site (DRS), as an alternative or supplementary mode of ERK pathway inhibition in BRAF-V600E melanoma. Targeting the DRS with inhibitors in melanoma has the potential to not only disrupt the catalytic apparatus of ERK but also its noncatalytic functions, which have significant impacts on spatiotemporal signaling dynamics and cell fate.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Dominio Catalítico/genética , Humanos , Melanoma/genética , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
2.
ACS Infect Dis ; 8(11): 2259-2270, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36315931

RESUMEN

SARS-CoV-2, a coronavirus strain that started a worldwide pandemic in early 2020, attaches to human cells by binding its spike (S) glycoprotein to a host receptor protein angiotensin-converting enzyme 2 (ACE2). Blocking the interaction between the S protein and ACE2 has emerged as an important strategy for preventing viral infection. We systematically developed and optimized an AlphaLISA assay to investigate binding events between ACE2 and the ectodomain of the SARS-CoV-2 S protein (S-614G: residues 1-1208 with a D614G mutation). Using S-614G permits discovering potential allosteric inhibitors that stabilize the S protein in a conformation that impedes its access to ACE2. Over 30,000 small molecules were screened in a high-throughput format for activity against S-614G and ACE2 binding using the AlphaLISA assay. A viral entry assay was used to validate hits using lentiviral particles pseudotyped with the full-length S protein of the Wuhan-1 strain. Two compounds identified in the screen, oleic acid and suramin, blocked the attachment of S-614G to ACE2 and S protein-driven cell entry into Calu-3 and ACE2-overexpressing HEK293T cells. Oleic acid inhibits S-614G binding to ACE2 far more potently than to the receptor-binding domain (RBD, residues 319-541 of SARS-CoV-2 S), potentially indicating a noncompetitive mechanism. The results indicate that using the full-length ectodomain of the S protein can be important for identifying allosteric inhibitors of ACE2 binding. The approach reported here represents a rapidly adaptable format for discovering receptor-binding inhibitors to S-proteins of future coronavirus strains.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Ácido Oléico , Células HEK293 , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo
3.
Sci Rep ; 10(1): 8537, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444778

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by metastasis, drug resistance and high rates of recurrence. With a lack or targeted therapies, TNBC is challenging to treat and carries a poor prognosis. Patients with TNBC tumors expressing high levels of ERK2 have a poorer prognosis than those with low ERK2-expressing tumors. The MAPK pathway is often found to be highly activated in TNBC, however the precise functions of the ERK isoforms (ERK1 and ERK2) in cancer progression have not been well defined. We hypothesized that ERK2, but not ERK1, promotes the cancer stem cell (CSC) phenotype and metastasis in TNBC. Stable knockdown clones of the ERK1 and ERK2 isoforms were generated in SUM149 and BT549 TNBC cells using shRNA lentiviral vectors. ERK2 knockdown significantly inhibited anchorage-independent colony formation and mammosphere formation, indicating compromised self-renewal capacity. This effect correlated with a reduction in migration and invasion. SCID-beige mice injected via the tail vein with ERK clones were employed to determine metastatic potential. SUM149 shERK2 cells had a significantly lower lung metastatic burden than control mice or mice injected with SUM149 shERK1 cells. The Affymetrix HGU133plus2 microarray platform was employed to identify gene expression changes in ERK isoform knockdown clones. Comparison of gene expression levels between SUM149 cells with ERK2 or ERK1 knockdown revealed differential and in some cases opposite effects on mRNA expression levels. Those changes associated with ERK2 knockdown predominantly altered regulation of CSCs and metastasis. Our findings indicate that ERK2 promotes metastasis and the CSC phenotype in TNBC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Mama Triple Negativas/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones SCID , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Células Madre Neoplásicas/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
ACS Chem Biol ; 14(6): 1183-1194, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31058487

RESUMEN

Extracellular signal-regulated kinases (ERK1/2) are mitogen-activated protein kinases (MAPKs) that play a pro-tumorigenic role in numerous cancers. ERK1/2 possess two protein-docking sites that are distinct from the active site: the D-recruitment site (DRS) and the F-recruitment site. These docking sites facilitate substrate recognition, intracellular localization, signaling specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic context may overcome many problems associated with traditional ATP-competitive inhibitors. Here, we identified a new class of inhibitors that target the ERK DRS by screening a synthetic combinatorial library of more than 30 million compounds. The screen detects the competitive displacement of a fluorescent peptide from the DRS of ERK2. The top molecular scaffold from the screen was optimized for structure-activity relationship by positional scanning of different functional groups. This resulted in 10 compounds with similar binding affinities and a shared core structure consisting of a tertiary amine hub with three functionalized cyclic guanidino branches. Compound 2507-1 inhibited ERK2 from phosphorylating a DRS-targeting substrate and prevented the phosphorylation of ERK2 by a constitutively active MEK1 (MAPK/ERK kinase 1) mutant. Interaction between an analogue, 2507-8, and the ERK2 DRS was confirmed by nuclear magnetic resonance and X-ray crystallography. 2507-8 forms critical interactions at the common docking domain residue Asp319 via an arginine-like moiety that is shared by all 10 hits, suggesting a common binding mode. The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Activación Enzimática , Guanidina/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/química , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA