Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Epilepsy Behav ; 115: 107602, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33279440

RESUMEN

In this cohort study, we aim to compare outcomes from coronavirus disease 2019 (COVID-19) in people with severe epilepsy and other co-morbidities living in long-term care facilities which all implemented early preventative measures, but different levels of surveillance. During 25-week observation period (16 March-6 September 2020), we included 404 residents (118 children), and 1643 caregivers. We compare strategies for infection prevention, control, and containment, and related outcomes, across four UK long-term care facilities. Strategies included early on-site enhancement of preventative and infection control measures, early identification and isolation of symptomatic cases, contact tracing, mass surveillance of asymptomatic cases and contacts. We measured infection rate among vulnerable people living in the facilities and their caregivers, with asymptomatic and symptomatic cases, including fatality rate. We report 38 individuals (17 residents) who tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive, with outbreaks amongst residents in two facilities. At Chalfont Centre for Epilepsy (CCE), 10/98 residents tested positive: two symptomatic (one died), eight asymptomatic on weekly enhanced surveillance; 2/275 caregivers tested positive: one symptomatic, one asymptomatic. At St Elizabeth's (STE), 7/146 residents tested positive: four symptomatic (one died), one positive during hospital admission for symptoms unrelated to COVID-19, two asymptomatic on one-off testing of all 146 residents; 106/601 symptomatic caregivers were tested, 13 positive. In addition, during two cycles of systematically testing all asymptomatic carers, four tested positive. At The Meath (TM), 8/80 residents were symptomatic but none tested; 26/250 caregivers were tested, two positive. At Young Epilepsy (YE), 8/80 children were tested, all negative; 22/517 caregivers were tested, one positive. Infection outbreaks in long-term care facilities for vulnerable people with epilepsy can be quickly contained, but only if asymptomatic individuals are identified through enhanced surveillance at resident and caregiver level. We observed a low rate of morbidity and mortality, which confirmed that preventative measures with isolation of suspected and confirmed COVID-19 residents can reduce resident-to-resident and resident-to-caregiver transmission. Children and young adults appear to have lower infection rates. Even in people with epilepsy and multiple co-morbidities, we observed a high percentage of asymptomatic people suggesting that epilepsy-related factors (anti-seizure medications and seizures) do not necessarily lead to poor outcomes.


Asunto(s)
COVID-19/epidemiología , Epilepsia/epidemiología , Control de Infecciones/tendencias , Cuidados a Largo Plazo/tendencias , Instituciones Residenciales/tendencias , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/terapia , Estudios de Cohortes , Comorbilidad , Epilepsia/terapia , Femenino , Humanos , Control de Infecciones/métodos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Reino Unido/epidemiología , Adulto Joven
2.
Front Immunol ; 9: 637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636754

RESUMEN

Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.


Asunto(s)
Granuloma/inmunología , Inflamación/inmunología , Macrófagos del Hígado/fisiología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Hígado/inmunología , Macrófagos/fisiología , Células T Asesinas Naturales/inmunología , Animales , Células Cultivadas , Quimiocinas/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Análisis de Sistemas , Activación Transcripcional
3.
Curr Drug Targets ; 13(12): 1560-74, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22974398

RESUMEN

Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Neoplasias/metabolismo , Transducción de Señal , Biología de Sistemas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Gráficos por Computador , Diseño Asistido por Computadora , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Diseño de Software
4.
IMA Fungus ; 1(2): 155-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22679574

RESUMEN

This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA