Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neuroinflammation ; 13(1): 306, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27955696

RESUMEN

BACKGROUND: Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches-whether in vivo or in vitro-have often been only snapshots of this complex web of interactions. METHODS: We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1ß, TNF-α, and MCP1,2. RESULTS: In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. CONCLUSIONS: Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.


Asunto(s)
Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Citocinas/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Claudina-5/metabolismo , Citocinas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Interleucina-1beta/farmacología , Dispositivos Laboratorio en un Chip , Lipopolisacáridos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Modelos Biológicos , Transporte de Proteínas/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología , Proteína de la Zonula Occludens-1/metabolismo
2.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534508

RESUMEN

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.

3.
Anal Chem ; 85(11): 5411-9, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23688280

RESUMEN

Bacterial biofilms are a metabolically heterogeneous community of bacteria distributed in an extracellular matrix comprised primarily of hydrated polysaccharides. Effective inhibitory concentrations measured under planktonic conditions are not applicable to biofilms, and inhibition concentrations measured for biofilms vary widely. Here, we introduce a novel microfluidic approach for screening respiration inhibition of bacteria in a biofilm array morphology. The device geometry and operating conditions allow antimicrobial concentration and flux to vary systematically and predictably with space and time. One experiment can screen biofilm respiratory responses to many different antimicrobial concentrations and dosing rates in parallel. To validate the assay, onset of respiration inhibition following NaN3 exposure is determined optically using an O2-sensing thin film. Onset of respiration inhibition obeys a clear and reproducible pattern based on time for diffusive transport of the respiration inhibitor to each biofilm in the array. This approach can be used for high-throughput screening of antimicrobial effectiveness as a function of microbial characteristics, antimicrobial properties, or antimicrobial dosing rates. The approach may also be useful in better understanding acquired antimicrobial resistance or for screening antimicrobial combinations.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Técnicas Biosensibles/métodos , Microquímica , Respiración/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Catalasa/metabolismo , Simulación por Computador , Relación Dosis-Respuesta a Droga , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Pruebas de Sensibilidad Microbiana , Técnicas Analíticas Microfluídicas , Oxígeno/química , Oxígeno/metabolismo , Nitrito de Sodio/farmacología
4.
J Phys Chem A ; 115(16): 4076-81, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21338163

RESUMEN

We report the observation of broad-spectrum fluorescence from single CdSe nanocrystals. Individual semiconductor nanocrystals typically have a narrower emission spectrum than that of an ensemble. However, our experiments show that the ensemble white-light emission observed in ultrasmall CdSe nanocrystals is the result of many single CdSe nanocrystals, each emitting over the entire visible spectrum. These results indicate that each white-light-emitting CdSe nanocrystal contains all the trap states that give rise to the observed white-light emission.


Asunto(s)
Compuestos de Cadmio/química , Nanoestructuras/química , Nanotecnología/métodos , Compuestos de Selenio/química , Tamaño de la Partícula , Espectrometría de Fluorescencia , Propiedades de Superficie
5.
Biomed Microdevices ; 12(1): 135-44, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19859812

RESUMEN

We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools-a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator/prey relationships among microbes.


Asunto(s)
Análisis de Inyección de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Rotación
6.
Biomicrofluidics ; 12(3): 034102, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29774083

RESUMEN

The interaction of cancer cells with the stromal cells and matrix in the tumor microenvironment plays a key role in progression to metastasis. A better understanding of the mechanisms underlying these interactions would aid in developing new therapeutic approaches to inhibit this progression. Here, we describe the fabrication of a simple microfluidic bioreactor capable of recapitulating the three-dimensional breast tumor microenvironment. Cancer cell spheroids, fibroblasts, and endothelial cells co-cultured in this device create a robust microenvironment suitable for studying in real time the migration of cancer cells along matrix structures laid down by fibroblasts within the 3D tumor microenvironment. This system allows for ready evaluation of response to targeted therapy.

7.
Acta Biomater ; 48: 68-78, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27818308

RESUMEN

Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes with well-developed sarcomeric structure, recapitulated the Frank-Starling force-tension relationship, and demonstrated expected transmembrane action potentials, electrical and mechanical restitutions, and responses to both ß-adrenergic stimulation and blebbistatin. The I-Wire platform enables creation and mechanical and electrical characterization of ECTCs, and hence can be valuable in the study of cardiac diseases, drug screening, drug development, and the qualification of cells for tissue-engineered regenerative medicine. STATEMENT OF SIGNIFICANCE: There is a growing interest in creating engineered heart tissue constructs for basic cardiac research, applied research in cardiac pharmacology, and repair of damaged hearts. We address an unmet need to characterize fully the performance of these tissues with our simple "I-Wire" assay that allows application of controlled forces to three-dimensional cardiac fiber constructs and measurement of both the electrical and mechanical properties of the construct. The advantage of I-Wire over other approaches is that the constructs being measured are truly three-dimensional, rather than a single layer of cells grown within a microfluidic device. We anticipate that the I-Wire will be extremely useful for the evaluation of myocardial constructs created using cardiomyocytes derived from human induced pluripotent stem cells.


Asunto(s)
Corazón/fisiología , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Elasticidad , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoproterenol/farmacología , Contracción Miocárdica/efectos de los fármacos , Fenotipo , Ratas Sprague-Dawley
8.
Biomicrofluidics ; 9(5): 054124, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26576206

RESUMEN

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.

9.
IEEE Trans Biomed Eng ; 60(3): 682-90, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23380852

RESUMEN

The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (µHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 µL for the µHu. We believe that successful mHu and µHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.


Asunto(s)
Órganos Artificiales , Ingeniería Biomédica , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Ingeniería Biomédica/instrumentación , Ingeniería Biomédica/métodos , Humanos , Biología de Sistemas/instrumentación
10.
Lab Chip ; 12(21): 4560-8, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22964798

RESUMEN

We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To demonstrate the ability of our Thick-Tissue Bioreactor (TTB) to provide stable, long-term maintenance of high-density cellular arrays, we observed the morphogenic growth of human mammary epithelial cell lines, MCF-10A and their invasive variants, cultured under three-dimensional (3D) conditions inside our system. Over the course of 21 days, these cells typically develop into hollow "mammospheres" if cultured in standard 3D Matrigel. This complex morphogenic process requires alterations in a variety of cellular functions, including degradation of extracellular matrix that is regulated by cell-produced matrix proteinases. For our "drug" delivery testing and validation experiments we have introduced proteinase inhibitors into the fluid supply system, and we observed both reduced proteinase activity and inhibited cellular morphogenesis. The size inhibition results correlated well with the overall proteinase activities of the tested cells.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Sistemas de Liberación de Medicamentos , Células Epiteliales/efectos de los fármacos , Técnicas Analíticas Microfluídicas/métodos , Inhibidores de Proteasas/farmacología , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Docetaxel , Células Epiteliales/enzimología , Diseño de Equipo , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Péptido Hidrolasas/metabolismo , Relación Estructura-Actividad , Taxoides/farmacología
11.
Integr Biol (Camb) ; 2(11-12): 648-58, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20949221

RESUMEN

Cells sense and interpret chemical gradients, and respond by localized responses that lead to directed migration. An open microfluidic device (OMD) was developed to provide quantitative information on both the gradient and morphological changes that occurred as cells crawled through various microfabricated channels. This device overcame problems that many current devices have been plagued with, such as complicated cell loading, media evaporation and channel blockage by air bubbles. We used a micropipette to set up stable gradients formed by passive diffusion and thus avoided confounding cellular responses produced by shear forces. Two versions of the OMD are reported here: one device that has channels with widths of 6, 8, 10 and 12 µm, while the other has two large 100 µm channels to minimize cellular interaction with lateral walls. These experiments compared the migration rates and qualitative behavior of Dictyostelium discoideum cells responding to measurable cAMP and folic acid gradients in small and large channels. We report on the influence that polarity has on a cell's ability to migrate when confined in a channel. Polarized cells that migrated to cAMP were significantly faster than the unpolarized cells that crawled toward folic acid. Unpolarized cells in wide channels often strayed off course, yet migrated faster than unpolarized cells in confined channels. Cells in channels farthest from the micropipette migrated through the channels at rates similar to cells in channels with higher concentrations, suggesting that cell speed was independent of mean concentration. Lastly, it was found that the polarized cells could easily change migration direction even when only the leading edge of the cell was exposed to a lateral gradient.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Movimiento Celular/efectos de los fármacos , Polaridad Celular , Rastreo Celular , Quimiotaxis/efectos de los fármacos , AMP Cíclico/farmacología , Dictyostelium/efectos de los fármacos , Dictyostelium/fisiología , Diseño de Equipo , Ácido Fólico/farmacología
12.
J Vis Exp ; (39)2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20440259

RESUMEN

Microbial growth and transport in porous media have important implications for the quality of groundwater and surface water, the recycling of nutrients in the environment, as well as directly for the transmission of pathogens to drinking water supplies. Natural porous media is composed of an intricate physical topology, varied surface chemistries, dynamic gradients of nutrients and electron acceptors, and a patchy distribution of microbes. These features vary substantially over a length scale of microns, making the results of macro-scale investigations of microbial transport difficult to interpret, and the validation of mechanistic models challenging. Here we demonstrate how simple microfluidic devices can be used to visualize microbial interactions with micro-structured habitats, to identify key processes influencing the observed phenomena, and to systematically validate predictive models. Simple, easy-to-use flow cells were constructed out of the transparent, biocompatible and oxygen-permeable material poly(dimethyl siloxane). Standard methods of photolithography were used to make micro-structured masters, and replica molding was used to cast micro-structured flow cells from the masters. The physical design of the flow cell chamber is adaptable to the experimental requirements: microchannels can vary from simple linear connections to complex topologies with feature sizes as small as 2 microm. Our modular EcoChip flow cell array features dozens of identical chambers and flow control by a gravity-driven flow module. We demonstrate that through use of EcoChip devices, physical structures and pressure heads can be held constant or varied systematically while the influence of surface chemistry, fluid properties, or the characteristics of the microbial population is investigated. Through transport experiments using a non-pathogenic, green fluorescent protein-expressing Vibrio bacterial strain, we illustrate the importance of habitat structure, flow conditions, and inoculums size on fundamental transport phenomena, and with real-time particle-scale observations, demonstrate that microfluidics offer a compelling view of a hidden world.


Asunto(s)
Técnicas Microbiológicas/instrumentación , Técnicas Microbiológicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Vibrio/fisiología , Dimetilpolisiloxanos/química , Ecosistema , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/biosíntesis , Vibrio/crecimiento & desarrollo , Vibrio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA