Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA ; 29(7): 1007-1019, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001915

RESUMEN

The multifunctional RNA recognition motif-containing protein Y14/RBM8A participates in mRNA metabolism and is essential for the efficient repair of DNA double-strand breaks (DSBs). Y14 contains highly charged, low-complexity sequences in both the amino- and carboxy-terminal domains. The feature of charge segregation suggests that Y14 may undergo liquid-liquid phase separation (LLPS). Recombinant Y14 formed phase-separated droplets, which were sensitive to pH and salt concentration. Domain mapping suggested that LLPS of Y14 involves multivalent electrostatic interactions and is partly determined by the net charge of its low-complexity regions. Phospho-mimicry of the carboxy-terminal arginine-serine dipeptides of Y14 suppressed phase separation. Moreover, RNA could phase separate into Y14 droplets and modulate Y14 LLPS in a concentration-dependent manner. Finally, the capacity of Y14 in LLPS and coacervation with RNA in vitro correlated with its activity in DSB repair. These results reveal a molecular rule for LLPS of Y14 in vitro and an implication for its co-condensation with RNA in genome stability.


Asunto(s)
Arginina , ARN , ARN/genética , Arginina/química , Dominios Proteicos , Proteínas de Unión al ARN/metabolismo , Reparación del ADN
2.
Antioxidants (Basel) ; 11(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421474

RESUMEN

Previous reviews have already explored the safety and bioavailability of astaxanthin, as well as its beneficial effects on human body. The great commercial potential in a variety of industries, such as the pharmaceutical and health supplement industries, has led to a skyrocketing demand for natural astaxanthin. In this study, we have successfully optimized the astaxanthin yield up to 12.8 mg/g DCW in a probiotic yeast and purity to 97%. We also verified that it is the desired free-form 3S, 3'S configurational stereoisomer by NMR and FITR that can significantly increase the bioavailability of astaxanthin. In addition, we have proven that our extracted astaxanthin crystals have higher antioxidant capabilities compared with natural esterified astaxanthin from H. pluvialis. We also screened for potential adverse effects of the pure astaxanthin crystals extracted from the engineered probiotic yeast by dosing SD rats with 6, 12, and 24 mg/kg/day of astaxanthin crystals via oral gavages for a 13-week period and have found no significant biological differences between the control and treatment groups in rats of both genders, further confirming the safety of astaxanthin crystals. This study demonstrates that developing metabolically engineered microorganisms provides a safe and feasible approach for the bio-based production of many beneficial compounds, including astaxanthin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA