Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090581

RESUMEN

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Asunto(s)
Linfocitos B/inmunología , Antígenos CD11/metabolismo , Subgrupos Linfocitarios/inmunología , Células T Auxiliares Foliculares/inmunología , Proteínas de Dominio T Box/metabolismo , Virosis/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Linfocitos B/metabolismo , Diferenciación Celular/inmunología , Centro Germinal/inmunología , Alphainfluenzavirus/inmunología , Integrinas/metabolismo , Subgrupos Linfocitarios/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Ratones , Bazo/inmunología
2.
J Immunol ; 210(12): 1861-1865, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37133336

RESUMEN

Tbet+CD11c+ B cells, also known as age-associated B cells (ABCs), are pivotal contributors to humoral immunity following infection and in autoimmunity, yet their in vivo generation is incompletely understood. We used a mouse model of systemic acute lymphocytic choriomeningitis virus infection to examine the developmental requirements of ABCs that emerged in the spleen and liver. IL-21 signaling through STAT3 was indispensable for ABC development. In contrast, IFN-γ signaling through STAT1 was required for B cell activation and proliferation. Mice that underwent splenectomy or were deficient in lymphotoxin α generated hepatic ABCs despite the lack of secondary lymphoid organ contributions, suggesting that the liver supported de novo generation of these cells separately from their development in lymphoid organs. Thus, IFN-γ and IL-21 signaling have distinct, stage-specific roles in ABC differentiation, while the tissue microenvironment provides additional cues necessary for their development.


Asunto(s)
Interleucinas , Coriomeningitis Linfocítica , Ratones , Animales , Ratones Noqueados , Diferenciación Celular , Ratones Endogámicos C57BL
3.
Adv Sci (Weinh) ; 10(31): e2302248, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37750461

RESUMEN

New vaccine platforms that activate humoral immunity and generate neutralizing antibodies are required to combat emerging pathogens, including influenza virus. A slurry of antigen-loaded hydrogel microparticles that anneal to form a porous scaffold with high surface area for antigen uptake by infiltrating immune cells as the biomaterial degrades is demonstrated to enhance humoral immunity. Antigen-loaded-microgels elicited a robust cellular humoral immune response, with increased CD4+ T follicular helper (Tfh) cells and prolonged germinal center (GC) B cells comparable to the commonly used adjuvant, aluminum hydroxide (Alum). Increasing the weight fraction of polymer material led to increased material stiffness and antigen-specific antibody titers superior to Alum. Vaccinating mice with inactivated influenza virus loaded into this more highly cross-linked formulation elicited a strong antibody response and provided protection against a high dose viral challenge. By tuning physical and chemical properties, adjuvanticity can be enhanced leading to humoral immunity and protection against a pathogen, leveraging two different types of antigenic material: individual protein antigen and inactivated virus. The flexibility of the platform may enable design of new vaccines to enhance innate and adaptive immune cell programming to generate and tune high affinity antibodies, a promising approach to generate long-lasting immunity.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Ratones , Humanos , Inmunidad Humoral , Porosidad , Anticuerpos Antivirales , Antígenos
4.
Arthritis Rheumatol ; 73(3): 478-489, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33512094

RESUMEN

OBJECTIVE: To assess the role of STAT4 activation in driving pathogenic follicular helper T (Tfh) cell secretion of the cytokines interleukin-21 (IL-21) and interferon-γ (IFNγ) in murine and human lupus. METHODS: The effect of STAT4-dependent Tfh cell signaling on cytokine production and autoreactive B cell maturation was assessed temporally during the course of lupus in a murine model, with further assessment of Tfh cell gene transcription performed using RNA-Seq technology. STAT4-dependent signaling and cytokine production were also determined in circulating Tfh-like cells in patients with systemic lupus erythematosus (SLE), as compared to cells from healthy control subjects, and correlations with disease activity were assessed in the Tfh-like cells from SLE patients. RESULTS: IL-21- and IFNγ-coproducing Tfh cells expanded prior to the detection of potentially pathogenic IgG2c autoantibodies in lupus-prone mice. Tfh cells transcriptionally evolved during the course of disease with acquisition of a STAT4-dependent gene signature. Maintenance of Tfh cell cytokine synthesis was dependent upon STAT4 signaling, driven by type I IFNs. Circulating Tfh-like cells from patients with SLE also secreted IL-21 and IFNγ, with STAT4 phosphorylation enhanced by IFNß, in association with the extent of clinical disease activity. CONCLUSION: We identified a role for type I IFN signaling in driving STAT4 activation and production of IL-21 and IFNγ by Tfh cells in murine and human lupus. Enhanced STAT4 activation in Tfh cells may underlie pathogenic B cell responses in both murine and human lupus. These data indicate that STAT4 guides pathogenic cytokine and immunoglobulin production in SLE, demonstrating a potential therapeutic target to modulate autoimmunity.


Asunto(s)
Autoanticuerpos/inmunología , Citocinas/inmunología , Interferón Tipo I/inmunología , Lupus Eritematoso Sistémico/inmunología , Factor de Transcripción STAT4/inmunología , Células T Auxiliares Foliculares/inmunología , Adulto , Animales , Formación de Anticuerpos/inmunología , Autoanticuerpos/biosíntesis , Linfocitos B/inmunología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulinas , Interferón gamma/inmunología , Interleucinas/inmunología , Masculino , Ratones Endogámicos MRL lpr , Persona de Mediana Edad , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA