Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372455

RESUMEN

The penetration of wearable devices in our daily lives is unstoppable. Although they are very popular, so far, these elements provide a limited range of services that are mostly focused on monitoring tasks such as fitness, activity, or health tracking. Besides, given their hardware and power constraints, wearable units are dependent on a master device, e.g., a smartphone, to make decisions or send the collected data to the cloud. However, a new wave of both communication and artificial intelligence (AI)-based technologies fuels the evolution of wearables to an upper level. Concretely, they are the low-power wide-area network (LPWAN) and tiny machine-learning (TinyML) technologies. This paper reviews and discusses these solutions, and explores the major implications and challenges of this technological transformation. Finally, the results of an experimental study are presented, analyzing (i) the long-range connectivity gained by a wearable device in a university campus scenario, thanks to the integration of LPWAN communications, and (ii) how complex the intelligence embedded in this wearable unit can be. This study shows the interesting characteristics brought by these state-of-the-art paradigms, concluding that a wide variety of novel services and applications will be supported by the next generation of wearables.


Asunto(s)
Inteligencia Artificial , Dispositivos Electrónicos Vestibles , Ejercicio Físico , Humanos , Aprendizaje Automático , Teléfono Inteligente
2.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947852

RESUMEN

The dawn of the Internet of Things (IoT) paradigm has brought about a series of novel services never imagined until recently. However, certain deployments such as those employing Low-Power Wide-Area Network (LPWAN)-based technologies may present severe network restrictions in terms of throughput and supported packet length. This situation prompts the isolation of LPWAN systems on islands with limited interoperability with the Internet. For that reason, the IETF's LPWAN working group has proposed a Static Context Header Compression (SCHC) scheme that permits compression and fragmentation of and IPv6/UDP/CoAP packets with the aim of making them suitable for transmission over the restricted links of LPWANs. Given the impact that such a solution can have in many IoT scenarios, this paper addresses its real evaluation in terms not only of latency and delivery ratio improvements, as a consequence of different compression and fragmentation levels, but also of the overhead in end node resources and useful payload sent per fragment. This has been carried out with the implementation of middleware and using a real testbed implementation of a LoRaWAN-to-IPv6 architecture together with a publish/subscribe broker for CoAP. The attained results show the advantages of SCHC, and sustain discussion regarding the impact of different SCHC and LoRaWAN configurations on the performance. It is highlighted that necessary end node resources are low as compared to the benefit of delivering long IPv6 packets over the LPWAN links. In turn, fragmentation can impose a lack of efficiency in terms of data and energy and, hence, a cross-layer solution is needed in order to obtain the best throughput of the network.

3.
Sensors (Basel) ; 20(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718087

RESUMEN

The distribution of Internet of Things (IoT) devices in remote areas and the need for network resilience in such deployments is increasingly important in smart spaces covering scenarios, such as agriculture, forest, coast preservation, and connectivity survival against disasters. Although Low-Power Wide Area Network (LPWAN) technologies, like LoRa, support high connectivity ranges, communication paths can suffer from obstruction due to orography or buildings, and large areas are still difficult to cover with wired gateways, due to the lack of network or power infrastructure. The proposal presented herein proposes to mount LPWAN gateways in drones in order to generate airborne network segments providing enhanced connectivity to sensor nodes wherever needed. Our LoRa-drone gateways can be used either to collect data and then report them to the back-office directly, or store-carry-and-forward data until a proper communication link with the infrastructure network is available. The proposed architecture relies on Multi-Access Edge Computing (MEC) capabilities to host a virtualization platform on-board the drone, aiming at providing an intermediate processing layer that runs Virtualized Networking Functions (VNF). This way, both preprocessing or intelligent analytics can be locally performed, saving communications and memory resources. The contribution includes a system architecture that has been successfully validated through experimentation with a real test-bed and comprehensively evaluated through computer simulation. The results show significant communication improvements employing LoRa-drone gateways when compared to traditional fixed LoRa deployments in terms of link availability and covered areas, especially in vast monitored extensions, or at points with difficult access, such as rugged zones.

4.
Sensors (Basel) ; 19(14)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337087

RESUMEN

Internet of Vehicles (IoV) is a hot research niche exploiting the synergy between Cooperative Intelligent Transportation Systems (C-ITS) and the Internet of Things (IoT), which can greatly benefit of the upcoming development of 5G technologies. The variety of end-devices, applications, and Radio Access Technologies (RATs) in IoV calls for new networking schemes that assure the Quality of Service (QoS) demanded by the users. To this end, network slicing techniques enable traffic differentiation with the aim of ensuring flow isolation, resource assignment, and network scalability. This work fills the gap of 5G network slicing for IoV and validates it in a realistic vehicular scenario. It offers an accurate bandwidth control with a full flow-isolation, which is essential for vehicular critical systems. The development is based on a distributed Multi-Access Edge Computing (MEC) architecture, which provides flexibility for the dynamic placement of the Virtualized Network Functions (VNFs) in charge of managing network traffic. The solution is able to integrate heterogeneous radio technologies such as cellular networks and specific IoT communications with potential in the vehicular sector, creating isolated network slices without risking the Core Network (CN) scalability. The validation results demonstrate the framework capabilities of short and predictable slice-creation time, performance/QoS assurance and service scalability of up to one million connected devices.

5.
Sensors (Basel) ; 19(2)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641877

RESUMEN

Remote vehicle monitoring is a field that has recently attracted the attention of both academia and industry. With the dawn of the Internet of Things (IoT) paradigm, the possibilities for performing this task have multiplied, due to the emergence of low-cost and multi-purpose monitoring devices and the evolution of wireless transmission technologies. Low Power-Wide Area Network (LPWAN) encompasses a set of IoT communication technologies that are gaining momentum, due to their highly valued features regarding transmission distance and end-device energy consumption. For that reason, in this work we present a vehicular monitoring platform enabled by LPWAN-based technology, namely Long Range Wide Area Network (LoRaWAN). Concretely, we explore the end-to-end architecture considering vehicle data retrieving by using an On-Board Diagnostics II (OBD-II) interface, their compression with a novel IETF compression scheme in order to transmit them over the constrained LoRaWAN link, and information visualization through a data server hosted in the cloud, by means of a web-based dashboard. A key advance of the proposal is the design and development of a UNIX-based network interface for LPWAN communications. The whole system has been tested in a university campus environment, showing its capabilities to remotely track vehicle status in real-time. The conducted performance evaluation also shows high levels of reliability in the transmission link, with packet delivery ratios over 95%. The platform boosts the process of monitoring vehicles, enabling a variety of services such as mechanical failure prediction and detection, fleet management, and traffic monitoring, and is extensible to light vehicles with severe power constraints.

6.
Sensors (Basel) ; 18(3)2018 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510524

RESUMEN

New verticals within the Internet of Things (IoT) paradigm such as smart cities, smart farming, or goods monitoring, among many others, are demanding strong requirements to the Radio Access Network (RAN) in terms of coverage, end-node's power consumption, and scalability. The technologies employed so far to provide IoT scenarios with connectivity, e.g., wireless sensor network and cellular technologies, are not able to simultaneously cope with these three requirements. Thus, a novel solution known as Low Power - Wide Area Network (LP-WAN) has emerged as a promising alternative to provide with low-cost and low-power-consumption connectivity to end-nodes spread in a wide area. Concretely, the Long-Range Wide Area Network (LoRaWAN) technology is one of the LP-WAN platforms that is receiving greater attention from both the industry and the academia. For that reason, in this work, a comprehensive performance evaluation of LoRaWAN under different environmental conditions is presented. The results are obtained from three real scenarios, namely, urban, suburban, and rural, considering both dynamic and static conditions, hence a discussion about the most proper LoRaWAN physical-layer configuration for each scenario is provided. Besides, a theoretical coverage study is also conducted by the use of a radio planning tool considering topographic maps and a precise propagation model. From the attained results, it can be concluded that it is necessary to evaluate the propagation conditions of the deployment scenario prior to the system implantation in order to reach a compromise between the robustness of the network and the transmission data-rate.

7.
Sensors (Basel) ; 18(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874839

RESUMEN

Luckily, new communication technologies and protocols are nowadays designed considering security issues. A clear example of this can be found in the Internet of Things (IoT) field, a quite recent area where communication technologies such as ZigBee or IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) already include security features to guarantee authentication, confidentiality and integrity. More recent technologies are Low-Power Wide-Area Networks (LP-WAN), which also consider security, but present initial approaches that can be further improved. An example of this can be found in Long Range (LoRa) and its layer-two supporter LoRa Wide Area Network (LoRaWAN), which include a security scheme based on pre-shared cryptographic material lacking flexibility when a key update is necessary. Because of this, in this work, we evaluate the security vulnerabilities of LoRaWAN in the area of key management and propose different alternative schemes. Concretely, the application of an approach based on the recently specified Ephemeral Diffie⁻Hellman Over COSE (EDHOC) is found as a convenient solution, given its flexibility in the update of session keys, its low computational cost and the limited message exchanges needed. A comparative conceptual analysis considering the overhead of different security schemes for LoRaWAN is carried out in order to evaluate their benefits in the challenging area of LP-WAN.

8.
Sensors (Basel) ; 16(5)2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27196909

RESUMEN

The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN), is explored. By means of a cellular-type architecture, LP-WAN-based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things) networks and services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA