Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Med Image Anal ; 9(5): 467-80, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16006170

RESUMEN

Simulating cardiac electromechanical activity is of great interest for a better understanding of pathologies and for therapy planning. Design and validation of such models is difficult due to the lack of clinical data. XMR systems are a new type of interventional facility in which patients can be rapidly transferred between X-ray and MR systems. Our goal is to design and validate an electromechanical model of the myocardium using XMR imaging. The proposed model is computationally fast and uses clinically observable parameters. We present the integration of anatomy, electrophysiology, and motion from patient data. Pathologies are introduced in the model and simulations are compared to measured data. Initial qualitative comparison on the two clinical cases presented is encouraging. Once fully validated, these models will make it possible to simulate different interventional strategies.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Imagen por Resonancia Magnética/métodos , Modelos Cardiovasculares , Contracción Miocárdica , Tomografía Computarizada por Rayos X/métodos , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/fisiopatología , Algoritmos , Simulación por Computador , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Técnica de Sustracción , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/patología
2.
IEEE Trans Med Imaging ; 23(9): 1065-76, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15377115

RESUMEN

In this paper, we present a technique that can be used to transform the motion or deformation fields defined in the coordinate system of one subject into the coordinate system of another subject. Such a transformation accounts for the differences in the coordinate systems of the two subjects due to misalignment and size/shape variation, enabling the motion or deformation of each of the subjects to be directly quantitatively and qualitatively compared. The field transformation is performed by using a nonrigid registration algorithm to determine the intersubject coordinate system mapping from the first subject to the second subject. This fixes the relationship between the coordinate systems of the two subjects, and allows us to recover the deformation/motion vectors of the second subject for each corresponding point in the first subject. Since these vectors are still aligned with the coordinate system of the second subject, the inverse of the intersubject coordinate mapping is required to transform these vectors into the coordinate system of the first subject, and we approximate this inverse using a numerical line integral method. The accuracy of our numerical inversion technique is demonstrated using a synthetic example, after which we present applications of our method to sequences of cardiac and brain images.


Asunto(s)
Algoritmos , Encéfalo/patología , Corazón/anatomía & histología , Imagen por Resonancia Magnética/métodos , Movimiento , Esquizofrenia/diagnóstico , Técnica de Sustracción , Elasticidad , Corazón/fisiología , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Med Image Anal ; 3(1): 77-101, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10709698

RESUMEN

We present a general formulation for a new knowledge-based approach to anisotropic diffusion of multi-valued and multi-dimensional images, with an illustrative application for the enhancement and segmentation of cardiac magnetic resonance (MR) images. In the proposed method all available information is incorporated through a new definition of the conductance function which differs from previous approaches in two aspects. First, we model the conductance as an explicit function of time and position, and not only of the differential structure of the image data. Inherent properties of the system (such as geometrical features or non-homogeneous data sampling) can therefore be taken into account by allowing the conductance function to vary depending on the location in the spatial and temporal coordinate space. Secondly, by defining the conductance as a second-rank tensor, the non-homogeneous diffusion equation gains a truly anisotropic character which is essential to emulate and handle certain aspects of complex data systems. The method presented is suitable for image enhancement and segmentation of single- or multi-valued images. We demonstrate the efficiency of the proposed framework by applying it to anatomical and velocity-encoded cine volumetric (4-D) MR images of the left ventricle. Spatial and temporal a priori knowledge about the shape and dynamics of the heart is incorporated into the diffusion process. We compare our results to those obtained with other diffusion schemes and exhibit the improvement in regions of the image with low contrast and low signal-to-noise ratio.


Asunto(s)
Inteligencia Artificial , Corazón/anatomía & histología , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Algoritmos , Anisotropía , Modelos Lineales , Movimiento (Física) , Contracción Miocárdica , Dinámicas no Lineales , Propiedades de Superficie
4.
Artículo en Inglés | MEDLINE | ID: mdl-16685874

RESUMEN

Tachyarrhythmias are pathological fast heart rhythms often caused by abnormally conducting myocardial areas (foci). Treatment by radio-frequency (RF) ablation uses electrode-catheters to monitor and destroy foci. The procedure is normally guided with x-rays (2D), and thus prone to errors in location and excessive radiation exposure. Our main goal is to provide pre- and intra-operative 3D MR guidance in XMR systems by locating the abnormal conduction pathways. We address the inverse electro-mechanical relation by using motion in order to infer electrical propagation. For this purpose we define a probabilistic measure of the onset of regional myocardial activation, derived from 3D motion fields obtained by tracking tagged MR sequences with non-rigid registration. Activation isochrones are then derived to determine activation onset. We also compare regional motion between two different image acquisitions, thus assisting in diagnosing arrhythmia, in follow up of treatment, and in determining whether the ablation was successful. Difference maps of isochrones and other motion descriptors are computed to determine abnormal patterns. Validation was carried out using an electromechanical model of the heart, synthetic data, a cardiac MRI atlas of motion and geometry, MRI data from 6 healthy volunteers (one of them subjected to stress), and an MRI study on a patient with tachyarrhythmia, before and after RF ablation. A pre-operative MRI study on a second patient with tachyarrhythmia was used to test the methodology in a clinical scenario, predicting the abnormally conducting region.


Asunto(s)
Sistema de Conducción Cardíaco/patología , Sistema de Conducción Cardíaco/cirugía , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Cirugía Asistida por Computador/métodos , Taquicardia/diagnóstico , Taquicardia/cirugía , Adulto , Artefactos , Niño , Estudios de Factibilidad , Humanos , Movimiento (Física) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA