Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Craniomaxillofac Surg ; 52(6): 707-714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582676

RESUMEN

Axial vascularization of tissue constructs is essential to maintain an adequate blood supply for a stable regeneration of a clinically relevant tissue size. The versatility of the arterio-venous loop (AVL) has been previously shown in various small and large animal models as well as in clinical reports for bone regeneration. We have previously demonstrated the capability of the AVL to induce axial vascularization and to support the nourishment of tissue constructs in small animal models after applying high doses of ionizing radiation comparable to those applied for adjuvant radiotherapy after head and neck cancer. We hypothesize that this robust ability to induce regeneration after irradiation could be related to a state of hypoxia inside the constructs that triggers the HIF1 (hypoxia induced factor 1) - SDF1 (stromal derived factor 1) axis leading to chemotaxis of progenitor cells and induction of tissue regeneration and vascularization. We analyzed the expression of HIF1 and SDF1 via immunofluorescence in axially vascularized bone tissue engineering constructs in Lewis rats 2 and 5 weeks after local irradiation with 9Gy or 15Gy. We also analyzed the expression of various genes for osteogenic differentiation (collagen 1, RUNX, alkaline phosphatase and osteonectin) via real time PCR analysis. The expression of HIF1 and SDF1 was enhanced two weeks after irradiation with 15Gy in comparison to non-irradiated constructs. The expression of osteogenic markers was enhanced at the 5-weeks time point with significant results regarding collagen, alkaline phosphatase and osteonectin. These results indicate that the hypoxia within the AVL constructs together with an enhanced SDF1 expression probably play a role in promoting tissue differentiation. The process of tissue generation triggered by hypoxia in the vicinity of a definite vascular axis with enhanced tissue differentiation over time resembles hereby the well-known concept of organogenesis in fetal life.


Asunto(s)
Quimiocina CXCL12 , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Animales , Ratas , Organogénesis/fisiología , Neovascularización Fisiológica/fisiología , Osteogénesis/fisiología , Hipoxia , Regeneración Ósea/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia , Factor 1 Inducible por Hipoxia
2.
PLoS One ; 17(8): e0272697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951604

RESUMEN

Inducing axial vascularisation of tissue engineering constructs is a well-established method to support tissue growth in large 3-dimensional tissues. Progenitor cell chemotaxis towards axially vascularized tissues has not been well characterized. In a prospective randomized controlled study including 32 male syngeneic Lewis rats we investigated the capability of the axially vascularized constructs to attract systemically injected bone marrow mononuclear cells (BMMNCs). The underlying mechanism for cell homing was investigated focusing on the role of hypoxia and the SDF1-CXCR4-7 axis. Sixteen animals were used as donors for BMMNCs. The other animals were subjected to implantation of a tissue engineering construct in the subcutaneous groin region. These constructs were axially vascularized either via an arteriovenous loop (AVL, n = 6) or via uninterrupted flow-through vessels (non-AVL, n = 10). BMMNCs were labelled with quantum dots (Qdot® 655) and injected 12 days after surgery either via intra-arterial or intravenous routes. 2 days after cell injection, the animals were sacrificed and examined using fluorescence microscopy. The Qdot® 655 signals were detected exclusively in the liver, spleen, AVL constructs and to a minimal extent in the non-AVL constructs. A significant difference could be detected between the number of labelled cells in the AVL and non-AVL constructs with more cells detected in the AVL constructs specially in central zones (p <0.0001). The immunohistological analysis showed a significant increase in the absolute expression of HIF-1 in the AVL group in comparison to the non-AVL group. The PCR analysis confirmed a 1.4-fold increase in HIF-1 expression in AVL constructs. Although PCR analysis showed an enhanced expression of CXCR4 and CXCR7 in AVL constructs, no significant differences in SDF1 expression were detected via immunohistological or PCR analysis. At the examined time point, the AVL constructs can attract BMMNCs in a mechanism probably related to the hypoxia associated with a robust tissue formation.


Asunto(s)
Médula Ósea , Ingeniería de Tejidos , Animales , Masculino , Ratas , Células de la Médula Ósea , Hipoxia , Neovascularización Fisiológica , Estudios Prospectivos , Ratas Endogámicas Lew , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA