Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(5): 3102-3113, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254269

RESUMEN

Indium phosphide quantum dots have become an industrially relevant material for solid-state lighting and wide color gamut displays. The synthesis of indium phosphide quantum dots from indium carboxylates and tris(trimethylsilyl)phosphine (P(SiMe3)3) is understood to proceed through the formation of magic-sized clusters, with In37P20(O2CR)51 being the key isolable intermediate. The reactivity of the In37P20(O2CR)51 cluster is a vital parameter in controlling the conversion to quantum dots. Herein, we report structural perturbations of In37P20(O2CR)51 clusters induced by tuning the steric properties of a series of substituted phenylacetate ligands. This approach allows for control over reactivity with P(SiMe3)3, where meta-substituents enhance the susceptibility to ligand displacement, and para-substituents hinder phosphine diffusion to the core. Thermolysis studies show that with complete cluster dissolution, steric profile can modulate the nucleation period, resulting in a nanocrystal size dependence on ligand steric profile. The enhanced stability from ligand engineering also allows for the isolation and structural characterization by single-crystal X-ray diffraction of a new III-V magic-sized cluster with the formula In26P13(O2CR)39. This intermediate precedes the In37P20(O2CR)51 cluster on the InP QD reaction coordinate. The physical and electronic structure of this cluster are analyzed, providing new insight into previously unrecognized relationships between II-VI and III-V materials and the discrete growth of III-V cluster intermediates.

2.
ACS Cent Sci ; 10(3): 744-751, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559306

RESUMEN

The discovery of magic-sized clusters as intermediates in the synthesis of colloidal quantum dots has allowed for insight into formation pathways and provided atomically precise molecular platforms for studying the structure and surface chemistry of those materials. The synthesis of monodisperse InAs quantum dots has been developed through the use of indium carboxylate and As(SiMe3)3 as precursors and documented to proceed through the formation of magic-sized intermediates. Herein, we report the synthesis, isolation, and single-crystal X-ray diffraction structure of an InAs nanocluster that is ubiquitous across reports of InAs quantum dot synthesis. The structure, In26As18(O2CR)24(PR'3)3, differs substantially from previously reported semiconductor nanocluster structures even within the III-V family. However, it can be structurally linked to III-V and II-VI cluster structures through the anion sublattice. Further analysis using variable temperature absorbance spectroscopy and support from computation deepen our understanding of the reported structure and InAs nanomaterials as a whole.

3.
ACS Nano ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058675

RESUMEN

Single-photon sources are essential for advancing quantum technologies with scalable integration being a crucial requirement. To date, deterministic positioning of single-photon sources in large-scale photonic structures remains a challenge. In this context, colloidal quantum dots (QDs), particularly core/shell configurations, are attractive due to their solution processability. However, traditional QDs are typically small, about 3 to 6 nm, which restricts their deterministic placement and utility in large-scale photonic devices, particularly within optical cavities. The largest existing core/shell QDs are a family of giant CdSe/CdS QDs, with total diameters ranging from about 20 to 50 nm. Pushing beyond this size limit, we introduce a synthesis strategy for colossal CdSe/CdS QDs, with sizes ranging from 30 to 100 nm, using a stepwise high-temperature continuous injection method. Electron microscopy reveals a consistent hexagonal diamond morphology composed of 12 semipolar {101̅1} facets and one polar (0001) facet. We also identify conditions where shell growth is disrupted, leading to defects, islands, and mechanical instability, which suggest synthetic requirements for growing crystalline particles beyond 100 nm. The stepwise growth of thick CdS shells on CdSe cores enables the synthesis of emissive QDs with long photoluminescence lifetimes of a few microseconds and suppressed blinking at room temperature. Notably, QDs with 80 and 100 CdS monolayers exhibit high single-photon emission purity with second-order photon correlation g(2)(0) values below 0.2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA