Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687870

RESUMEN

Answering a query through a peer-to-peer database presents one of the greatest challenges due to the high cost and time required to obtain a comprehensive response. Consequently, these systems were primarily designed to handle approximation queries. In our research, the primary objective was to develop an intelligent system capable of responding to approximate set-value inquiries. This paper explores the use of particle optimization to enhance the system's intelligence. In contrast to previous studies, our proposed method avoids the use of sampling. Despite the utilization of the best sampling methods, there remains a possibility of error, making it difficult to guarantee accuracy. Nonetheless, achieving a certain degree of accuracy is crucial in handling approximate queries. Various factors influence the accuracy of sampling procedures. The results of our studies indicate that the suggested method has demonstrated improvements in terms of the number of queries issued, the number of peers examined, and its execution time, which is significantly faster than the flood approach. Answering queries poses one of the most arduous challenges in peer-to-peer databases, as obtaining a complete answer is both costly and time-consuming. Consequently, approximation queries have been adopted as a solution in these systems. Our research evaluated several methods, including flood algorithms, parallel diffusion algorithms, and ISM algorithms. When it comes to query transmission, the proposed method exhibits superior cost-effectiveness and execution times.

2.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963762

RESUMEN

The Internet of Things (IoT) is a distributed system that connects everything via internet. IoT infrastructure contains multiple resources and gateways. In such a system, the problem of optimizing IoT resource allocation and scheduling (IRAS) is vital, because resource allocation (RA) and scheduling deals with the mapping between recourses and gateways and is also responsible for optimally allocating resources to available gateways. In the IoT environment, a gateway may face hundreds of resources to connect. Therefore, manual resource allocation and scheduling is not possible. In this paper, the whale optimization algorithm (WOA) is used to solve the RA problem in IoT with the aim of optimal RA and reducing the total communication cost between resources and gateways. The proposed algorithm has been compared to the other existing algorithms. Results indicate the proper performance of the proposed algorithm. Based on various benchmarks, the proposed method, in terms of "total communication cost", is better than other ones.

3.
Comput Commun ; 162: 31-50, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843778

RESUMEN

Objective of this study is to introduce a secure IoHT system, which acts as a clinical decision support system with the diagnosis of cardiovascular diseases. In this sense, it was emphasized that the accuracy rate of diagnosis (classification) can be improved via deep learning algorithms, by needing no hybrid-complex models, and a secure data processing can be achieved with a multi-authentication and Tangle based approach. In detail, heart sounds were classified with Autoencoder Neural Networks (AEN) and the IoHT system was built for supporting doctors in real-time. For developing the diagnosis infrastructure by the AEN, PASCAL B-Training and Physiobank-PhysioNet A-Training heart sound datasets were used accordingly. For the PASCAL dataset, the AEN provided a diagnosis-classification performance with the accuracy of 100%, sensitivity of 100%, and the specificity of 100% whereas the rates were respectively 99.8%, 99.65%, and 99.13% for the PhysioNet dataset. It was seen that the findings by the developed AEN based solution were better than the alternative solutions from the literature. Additionally, usability of the whole IoHT system was found positive by the doctors, and according to the 479 real-case applications, the system was able to achieve accuracy rates of 96.03% for normal heart sounds, 91.91% for extrasystole, and 90.11% for murmur. In terms of security approach, the system was also robust against several attacking methods including synthetic data impute as well as trying to penetrating to the system via central system or mobile devices.

4.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857211

RESUMEN

In order to optimize intelligent applications driven by various sensors, it is vital to properly interpret and reuse sensor data from different domains. The construction of semantic maps which illustrate the relationship between heterogeneous domain ontologies plays an important role in knowledge reuse. However, most mapping methods in the literature use the literal meaning of each concept and instance in the ontology to obtain semantic similarity. This is especially the case for domain ontologies which are built for applications with sensor data. At the instance level, there is seldom work to utilize data of the sensor instances when constructing the ontologies' mapping relationship. To alleviate this problem, in this paper, we propose a novel mechanism to achieve the association between sensor data and domain ontology. In our approach, we first classify the sensor data by making them as SSN (Semantic Sensor Network) ontology instances, and map the corresponding instances to the concepts in the domain ontology. Secondly, a multi-strategy similarity calculation method is used to evaluate the similarity of the concept pairs between the domain ontologies at multiple levels. Finally, the set of concept pairs with a high similarity is selected by the analytic hierarchy process to construct the mapping relationship between the domain ontologies, and then the correlation between sensor data and domain ontologies are constructed. Using the method presented in this paper, we perform sensor data correlation experiments with a simulator for a real world scenario. By comparison to other methods, the experimental results confirm the effectiveness of the proposed approach.

5.
Sensors (Basel) ; 19(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652631

RESUMEN

Wireless sensor networks (WSN) have deeply influenced the working and living styles of human beings. Information security and privacy for WSN is particularly crucial. Cryptographic algorithms are extensively exploited in WSN applications to ensure the security. They are usually implemented in specific chips to achieve high data throughout with less computational resources. Cryptographic hardware should be rigidly tested to guarantee the correctness of encryption operation. Scan design improves significantly the test quality of chips and thus is widely used in semiconductor industry. Nevertheless, scan design provides a backdoor for attackers to deduce the cipher key of a cryptographic core. To protect the security of the cryptographic system we first present a secure scan architecture, in which an automatic test control circuitry is inserted to isolate the cipher key in test mode and clear the sensitive information at mode switching. Then, the weaknesses of this architecture are analyzed and an enhanced scheme using concept of test authorization is proposed. If the correct authorization key is applied within the specific time, the normal test can be performed. Otherwise, only secure scan test can be performed. The enhanced scan scheme ensures the security of cryptographic chips while remaining the advantages of scan design.

6.
Sensors (Basel) ; 19(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934790

RESUMEN

Recently, wireless sensor network (WSN) has drawn wide attention. It can be viewed as a network with lots of sensors that are autonomously organized and cooperate with each other to collect, process, and transmit data around targets to some remote administrative center. As such, sensors may be deployed in harsh environments where it is impossible for battery replacement. Therefore, energy efficient routing is crucial for applications that introduce WSNs. In this paper, we present an energy efficient routing schema combined with clustering and sink mobility technology. We first divide the whole sensor field into sectors and each sector elects a Cluster Head (CH) by calculating its members' weight. Member nodes calculate energy consumption of different routing paths to choose the optimal scenario. Then CHs are connected into a chain using the greedy algorithm for intercluster communication. Simulation results prove the presented schema outperforms some similar work such as Cluster-Chain Mobile Agent Routing (CCMAR) and Energy-efficient Cluster-based Dynamic Routing Algorithm (ECDRA). Additionally, we explore the influence of different network parameters on the performance of the network and further enhance its performance.

7.
Sensors (Basel) ; 19(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999689

RESUMEN

In recent years, wireless sensor networks (WSNs) have been widely applied to sense the physical environment, especially some difficult environment due to their ad-hoc nature with self-organization and local collaboration characteristics. Meanwhile, the rapid development of intelligent vehicles makes it possible to adopt mobile devices to collect information in WSNs. Although network performance can be greatly improved by those mobile devices, it is difficult to plan a reasonable travel route for efficient data gathering. In this paper, we present a travel route planning schema with a mobile collector (TRP-MC) to find a short route that covers as many sensors as possible. In order to conserve energy, sensors prefer to utilize single hop communication for data uploading within their communication range. Sojourn points (SPs) are firstly defined for a mobile collector to gather information, and then their number is determined according to the maximal coverage rate. Next, the particle swarm optimization (PSO) algorithm is used to search the optimal positions for those SPs with maximal coverage rate and minimal overlapped coverage rate. Finally, we schedule the shortest loop for those SPs by using ant colony optimization (ACO) algorithm. Plenty of simulations are performed and the results show that our presented schema owns a better performance compared to Low Energy Adaptive Clustering Hierarchy (LEACH), Multi-hop Weighted Revenue (MWR) algorithm and Single-hop Data-gathering Procedure (SHDGP).

8.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736392

RESUMEN

Energy efficiency and energy balancing are crucial research issues as per routing protocol designing for self-organized wireless sensor networks (WSNs). Many literatures used the clustering algorithm to achieve energy efficiency and energy balancing, however, there are usually energy holes near the cluster heads (CHs) because of the heavy burden of forwarding. As the clustering problem in lossy WSNs is proved to be a NP-hard problem, many metaheuristic algorithms are utilized to solve the problem. In this paper, a special clustering method called Energy Centers Searching using Particle Swarm Optimization (EC-PSO) is presented to avoid these energy holes and search energy centers for CHs selection. During the first period, the CHs are elected using geometric method. After the energy of the network is heterogeneous, EC-PSO is adopted for clustering. Energy centers are searched using an improved PSO algorithm and nodes close to the energy center are elected as CHs. Additionally, a protection mechanism is also used to prevent low energy nodes from being the forwarder and a mobile data collector is introduced to gather the data. We conduct numerous simulations to illustrate that our presented EC-PSO outperforms than some similar works in terms of network lifetime enhancement and energy utilization ratio.

9.
Sensors (Basel) ; 19(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704057

RESUMEN

Wireless Sensor Networks (WSNs) are usually troubled with constrained energy and complicated network topology which can be mitigated by introducing a mobile agent node. Due to the numerous nodes present especially in large scale networks, it is time-consuming for the collector to traverse all nodes, and significant latency exists within the network. Therefore, the moving path of the collector should be well scheduled to achieve a shorter length for efficient data gathering. Much attention has been paid to mobile agent moving trajectory panning, but the result has limitations in terms of energy consumption and network latency. In this paper, we adopt a hybrid method called HM-ACOPSO which combines ant colony optimization (ACO) and particle swarm optimization (PSO) to schedule an efficient moving path for the mobile agent. In HM-ACOPSO, the sensor field is divided into clusters, and the mobile agent traverses the cluster heads (CHs) in a sequence ordered by ACO. The anchor node of each CHs is selected in the range of communication by the mobile agent using PSO based on the traverse sequence. The communication range adjusts dynamically, and the anchor nodes merge in a duplicated covering area for further performance improvement. Numerous simulation results prove that the presented method outperforms some similar works in terms of energy consumption and data gathering efficiency.

10.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174313

RESUMEN

A wireless sensor network (WSN) is an essential component of the Internet of Things (IoTs) for information exchange and communication between ubiquitous smart objects. Clustering techniques are widely applied to improve network performance during the routing phase for WSN. However, existing clustering methods still have some drawbacks such as uneven distribution of cluster heads (CH) and unbalanced energy consumption. Recently, much attention has been paid to intelligent clustering methods based on machine learning to solve the above issues. In this paper, an affinity propagation-based self-adaptive (APSA) clustering method is presented. The advantage of K-medoids, which is a traditional machine learning algorithm, is combined with the affinity propagation (AP) method to achieve more reasonable clustering performance. AP is firstly utilized to determine the number of CHs and to search for the optimal initial cluster centers for K-medoids. Then the modified K-medoids is utilized to form the topology of the network by iteration. The presented method effectively avoids the weakness of the traditional K-medoids in aspects of the homogeneous clustering and convergence rate. Simulation results show that the proposed algorithm outperforms some latest work such as the unequal cluster-based routing scheme for multi-level heterogeneous WSN (UCR-H), the low-energy adaptive clustering hierarchy using affinity propagation (LEACH-AP) algorithm, and the energy degree distance unequal clustering (EDDUCA) algorithm.

11.
Sensors (Basel) ; 18(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558433

RESUMEN

Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone's life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao's, and Xiao's methods).


Asunto(s)
Algoritmos , Electrocardiografía , Humanos , Monitoreo Fisiológico , Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles
12.
J Med Syst ; 42(6): 112, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728780

RESUMEN

The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).


Asunto(s)
Seguridad Computacional , Sistemas de Información en Salud/organización & administración , Aprendizaje Automático , Teléfono Inteligente , Telemedicina/organización & administración , Algoritmos , Sistemas de Información en Salud/normas , Humanos , Telemedicina/normas
13.
Molecules ; 22(9)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28872627

RESUMEN

Protein pupylation is a type of post-translation modification, which plays a crucial role in cellular function of bacterial organisms in prokaryotes. To have a better insight of the mechanisms underlying pupylation an initial, but important, step is to identify pupylation sites. To date, several computational methods have been established for the prediction of pupylation sites which usually artificially design the negative samples using the verified pupylation proteins to train the classifiers. However, if this process is not properly done it can affect the performance of the final predictor dramatically. In this work, different from previous computational methods, we proposed an enhanced positive-unlabeled learning algorithm (EPuL) to the pupylation site prediction problem, which uses only positive and unlabeled samples. Firstly, we separate the training dataset into the positive dataset and the unlabeled dataset which contains the remaining non-annotated lysine residues. Then, the EPuL algorithm is utilized to select the reliably negative initial dataset and then iteratively pick out the non-pupylation sites. The performance of the proposed method was measured with an accuracy of 90.24%, an Area Under Curve (AUC) of 0.93 and an MCC of 0.81 by 10-fold cross-validation. A user-friendly web server for predicting pupylation sites was developed and was freely available at http://59.73.198.144:8080/EPuL.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Aprendizaje Automático , Procesamiento Proteico-Postraduccional , Proteínas/química , Bases de Datos de Proteínas , Unión Proteica , Programas Informáticos
14.
J Med Syst ; 41(12): 197, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29098445

RESUMEN

Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.


Asunto(s)
Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Humanos
16.
J Supercomput ; 78(12): 14548-14570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399758

RESUMEN

This paper compares the classification performance of machine learning classifiers vs. deep learning-based handcrafted models and various pretrained deep networks. The proposed study performs a comprehensive analysis of object classification techniques implemented on low-altitude UAV datasets using various machine and deep learning models. Multiple UAV object classification is performed through widely deployed machine learning-based classifiers such as K nearest neighbor, decision trees, naïve Bayes, random forest, a deep handcrafted model based on convolutional layers, and pretrained deep models. The best result obtained using random forest classifiers on the UAV dataset is 90%. The handcrafted deep model's accuracy score suggests the efficacy of deep models over machine learning-based classifiers in low-altitude aerial images. This model attains 92.48% accuracy, which is a significant improvement over machine learning-based classifiers. Thereafter, we analyze several pretrained deep learning models, such as VGG-D, InceptionV3, DenseNet, Inception-ResNetV4, and Xception. The experimental assessment demonstrates nearly 100% accuracy values using pretrained VGG16- and VGG19-based deep networks. This paper provides a compilation of machine learning-based classifiers and pretrained deep learning models and a comprehensive classification report for the respective performance measures.

17.
Front Public Health ; 10: 914973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159307

RESUMEN

Retinal vessel extraction plays an important role in the diagnosis of several medical pathologies, such as diabetic retinopathy and glaucoma. In this article, we propose an efficient method based on a B-COSFIRE filter to tackle two challenging problems in fundus vessel segmentation: (i) difficulties in improving segmentation performance and time efficiency together and (ii) difficulties in distinguishing the thin vessel from the vessel-like noise. In the proposed method, first, we used contrast limited adaptive histogram equalization (CLAHE) for contrast enhancement, then excerpted region of interest (ROI) by thresholding the luminosity plane of the CIELab version of the original RGB image. We employed a set of B-COSFIRE filters to detect vessels and morphological filters to remove noise. Binary thresholding was used for vessel segmentation. Finally, a post-processing method based on connected domains was used to eliminate unconnected non-vessel pixels and to obtain the final vessel image. Based on the binary vessel map obtained, we attempt to evaluate the performance of the proposed algorithm on three publicly available databases (DRIVE, STARE, and CHASEDB1) of manually labeled images. The proposed method requires little processing time (around 12 s for each image) and results in the average accuracy, sensitivity, and specificity of 0.9604, 0.7339, and 0.9847 for the DRIVE database, and 0.9558, 0.8003, and 0.9705 for the STARE database, respectively. The results demonstrate that the proposed method has potential for use in computer-aided diagnosis.


Asunto(s)
Algoritmos , Vasos Retinianos , Bases de Datos Factuales , Fondo de Ojo , Vasos Retinianos/anatomía & histología , Vasos Retinianos/patología
19.
Artif Intell Med ; 103: 101788, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32143795

RESUMEN

The recognition of cardiac arrhythmia in minimal time is important to prevent sudden and untimely deaths. The proposed work includes a complete framework for analyzing the Electrocardiogram (ECG) signal. The three phases of analysis include 1) the ECG signal quality enhancement through noise suppression by a dedicated filter combination; 2) the feature extraction by a devoted wavelet design and 3) a proposed hidden Markov model (HMM) for cardiac arrhythmia classification into Normal (N), Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Premature Ventricular Contraction (PVC) and Atrial Premature Contraction (APC). The main features extracted in the proposed work are minimum, maximum, mean, standard deviation, and median. The experiments were conducted on forty-five ECG records in MIT BIH arrhythmia database and in MIT BIH noise stress test database. The proposed model has an overall accuracy of 99.7 % with a sensitivity of 99.7 % and a positive predictive value of 100 %. The detection error rate for the proposed model is 0.0004. This paper also includes a study of the cardiac arrhythmia recognition using an IoMT (Internet of Medical Things) approach.


Asunto(s)
Arritmias Cardíacas/clasificación , Arritmias Cardíacas/diagnóstico , Electrocardiografía/métodos , Procesamiento de Señales Asistido por Computador , Arritmias Cardíacas/fisiopatología , Humanos , Cadenas de Markov , Relación Señal-Ruido , Análisis de Ondículas
20.
PLoS One ; 13(10): e0205097, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281661

RESUMEN

With the development of large-scale knowledge bases (KBs), knowledge-based question answering (KBQA) has become an important research topic in recent years. The key task in KBQA is relation detection, which is the process of finding a compatible answer type for a natural language question and generating its corresponding structured query over a KB. However, existing systems often rely on shallow probabilistic methods, which are less expressive than deep semantic representation methods. In addition, since KBs are still far from complete, it is necessary to develop a new strategy that leverages unstructured resources outside of KBs. In this work, we propose a novel Question Answering method with Relation Detection and Textual Evidence (QARDTE). First, to address the semantic gap problem in relation detection, we use bidirectional long-short term memory networks with different levels of abstraction to better capture sentence structures. Our model achieves improved results with robustness against a wide diversity of expressions and questions with multiple relations. Moreover, to help compensate for the incompleteness of KBs, we utilize external unstructured text to extract additional supporting evidence and combine this evidence with relation information during the answer re-ranking process. In experiments on two well-known benchmarks, our system achieves F1 values of 0.558 (+2.8%) and 0.663 (+5.7%), which are state-of-the-art results that show significant improvement over existing KBQA systems.


Asunto(s)
Bases del Conocimiento , Procesamiento de Lenguaje Natural , Humanos , Mejoramiento de la Calidad , Semántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA