RESUMEN
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Asunto(s)
Aeromonas salmonicida , Proteínas Bacterianas , Enfermedades de los Peces , Animales , Aeromonas salmonicida/patogenicidad , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Perciformes/microbiología , Forunculosis/microbiologíaRESUMEN
Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Asunto(s)
Inmunidad Adaptativa , Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Vacunas Bacterianas/inmunología , Forunculosis/inmunología , Forunculosis/prevención & control , Forunculosis/microbiología , Perciformes/inmunología , Antígenos Bacterianos/inmunologíaRESUMEN
A better understanding of unique anatomical and functional features of the visual systems of teleost fish could provide key knowledge on how these systems influence the health and survival of these animals in both wild and culture environments. We took a systematic approach to assess some of the visual systems of spotted wolffish (Anarhichas minor), a species of increasing importance in North Atlantic aquaculture initiatives. The lumpfish (Cyclopterus lumpus) was included in these studies in a comparative manner to provide reference. Histology, light and electron microscopy were used to study the spatial distribution and occurrence of cone photoreceptor cells and the nature of the retinal tissues, while immunohistochemistry was used to explore the expression patterns of two photoreceptor markers, XAP-1 and XAP-2, in both species. A marine bacterial infection paradigm in lumpfish was used to assess how host-pathogen responses might impact the expression of these photoreceptor markers in these animals. We define a basic photoreceptor mosaic and present an ultrastructural to macroscopic geographical configuration of the retinal pigment tissues in both animals. Photoreceptor markers XAP-1 and XAP-2 have novel distribution patterns in spotted wolffish and lumpfish retinas, and exogenous pathogenic influences can affect the normal expression pattern of XAP-1 in lumpfish. Live tank-side ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) revealed that normal cultured spotted wolffish display novel variations in the shape of the retinal tissue. These two complementary imaging findings suggest that spotted wolffish harbour unique ocular features not yet described in marine teleosts and that visual function might involve specific retinal tissue shape dynamics in these animals. Finally, extensive endogenous biofluorescence is present in the retinal tissues of both animals, which raises questions about how these animals might use retinal tissue in novel ways for visual perception and/or communication. This work advances fundamental knowledge on the visual systems of two economically important but now threatened North Atlantic teleosts and provides a basic foundation for further research on the visual systems of these animals in health versus disease settings. This work could also be useful for understanding and optimizing the health and welfare of lumpfish and spotted wolffish in aquaculture towards a one health or integrative perspective.
Asunto(s)
Acuicultura , Enfermedades de los Peces , Perciformes , Animales , Retina/ultraestructura , Ojo/ultraestructuraRESUMEN
Immune responses to infectious diseases impacting lumpfish (Cyclopterus lumpus) eye tissue are only starting to be studied at a molecular and histopathological level. In this study, we extend our understanding of lumpfish sensory organ anatomy, of components of the lumpfish nasal and ocular immune system and the nature of the intraocular response to Vibrio anguillarum infection. We have evaluated the expression of cluster of differentiation (CD) 45 protein, a tyrosine phosphatase, in larval and juvenile lumpfish tissues in order to spatially survey ocular and related head structures that may participate in early stages of intraocular immune responses. We provide here a histological mapping of the larval lumpfish nasal chamber system since its connectively with the eye though mucosal epithelia have not been explored. These results build upon our growing understanding of the lumpfish intraocular immune response to pathogens, exemplified herein by experimental nasally delivered V. anguillarum infection. CD45 is developmentally regulated in lumpfish eyes and periocular anatomy with early expression appearing in larvae in corneal epithelium and in nasal structures adjacent to the eye. Normal juvenile and adult lumpfish eyes express CD45 in the corneal epithelium, in leukocyte cells within blood vessel lumens of the rete mirabile, choroid body and choriocapillaris vasculatures. Experimental nasally delivered V. anguillarum infection led to qualitative and quantitative changes in CD45 expression in head kidney renal tubule tissues by 7 days post infection (dpi). The same animals showed redistribution and upregulation of corneal epithelial CD45 expression, corneal epithelial dysplasia and an increased frequency of CD45+ cells in ocular vasculature. Interestingly, while CD45 upregulation and/or CD45+ cell infiltration into inner ocular and retinal tissues was not observed under this experimental scenario, subtle neural retinal changes were observed in infected fish. This work provides new fundamental knowledge on North Atlantic teleost visual systems and vision biology in general.
Asunto(s)
Enfermedades de los Peces , Perciformes , Vibriosis , Animales , Larva , Monoéster Fosfórico Hidrolasas , Tirosina , Vibriosis/veterinariaRESUMEN
Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.
Asunto(s)
Vacunas Bacterianas/farmacología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Grampositivas/veterinaria , Riñón Cefálico/inmunología , Micrococcaceae/inmunología , Salmo salar/inmunología , Transcriptoma/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Formaldehído/química , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/prevención & control , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/prevención & control , Enfermedades Renales/veterinaria , Renibacterium , Salmo salar/genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/farmacologíaRESUMEN
Effective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation. Groups of 40 fish were intraperitoneally (ip) injected with different doses of A. salmonicida J410 isolated from infected sablefish to calculate the median lethal dose (LD50). Samples of blood, head kidney, spleen, brain, and liver were also collected at different time points to determine the infection kinetics. The LD50 was estimated as ~3 × 105 CFU/dose. To evaluate the immune protection provided by an autogenous vaccine and two commercial vaccines in a common garden experimental design, 140 fish were PIT-tagged, vaccinated and distributed equally into 4 tanks (35 fish for each group, including a control group). Blood samples were taken every 2 weeks to evaluate IgM titers. At 10 weeks post-immunization, all groups were ip challenged with 100 times the calculated LD50 for A. salmonicida J410. A. salmonicida was detected after 5 days post-infection (dpi) in all collected tissues. At 30 days post-challenge the relative percentage survival (RPS) with respect to the control group was calculated for each vaccine. The RPS for the bacterin mix was 65.22%, for Forte Micro 4® vaccine was 56.52% and for Alpha Ject Micro 4® was 30.43%, and these RPS values were reflected by A. salmonicida tissue colonization levels at 10 days post-challenge. Total IgM titers peaked at 6-8 weeks post-immunization, where the autogenous vaccine group showed the highest IgM titers and these values were consistent with the RPS data. Also, we determined that the A. salmonicida A-layer binds to immunoglobulins F(ab)' in a non-specific fashion, interfering with immune assays and potentially vaccine efficacy. Our results indicate that vaccine design influences sablefish immunity and provide a guide for future sablefish vaccine programs.
Asunto(s)
Enfermedades de los Peces/inmunología , Forunculosis/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Vacunación/veterinaria , Aeromonas salmonicida/fisiología , Animales , Enfermedades de los Peces/microbiología , Peces , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Inyecciones Intraperitoneales/veterinaria , Perciformes , Distribución AleatoriaRESUMEN
Lumpfish (Cyclopterus lumpus), a native fish of the North Atlantic Ocean, is utilized as cleaner fish to biocontrol sea lice infestations in Atlantic salmon aquaculture. However, bacterial infections are affecting cleaner fish performance. Vibrio anguillarum, the aetiological agent of vibriosis, is one of the most frequent bacterial infections in lumpfish, and effective vaccine programmes against this pathogen have been identified as a high priority for lumpfish. Vibrogen-2 is a commercial polyvalent bath vaccine that contains formalin-inactivated cultures of V. anguillarum serotypes O1 and O2, and Vibrio ordalii. In this study, we evaluated Vibrogen-2 efficacy in lumpfish against a local isolated V. anguillarum strain. Two groups of 125 lumpfish were bath-immunized, bath-boost-immunized at four weeks post-primary immunization, and intraperitoneally (i.p.) boost-immunized at eight weeks post-primary immunization. The control groups were i.p. mock-immunized with PBS. Twenty-seven weeks post-primary immunization, the fish were i.p. challenged with 10 or 100 times the V. anguillarum J360 LD50 dose. After the challenge, survival was monitored daily, and samples of tissues were collected at ten days post-challenge. Commercial vaccine Vibrogen-2 reduced V. anguillarum tissue colonization and delayed mortality but did not confer immune protection to C. lumpus against the V. anguillarum i.p. challenge.
Asunto(s)
Vacunas Bacterianas/uso terapéutico , Enfermedades de los Peces/prevención & control , Peces/microbiología , Vibriosis/veterinaria , Vibrio/inmunología , Animales , Acuicultura , Vacunas Bacterianas/inmunología , Agentes de Control Biológico , Enfermedades de los Peces/inmunología , Inmersión , Dosificación Letal Mediana , Vacunación/métodos , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico , Vibriosis/inmunología , Vibriosis/prevención & controlRESUMEN
Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is the aetiological agent of furunculosis in marine and freshwater fish. Once A. salmonicida invade the fish host through skin, gut or gills, it spreads and colonizes the head kidney, liver, spleen and brain. A. salmonicida infects leucocytes and exhibits an extracellular phase in the blood of the host; however, it is unknown whether A. salmonicida have an intraerythrocytic phase. Here, we evaluate whether A. salmonicida infects Atlantic salmon (Salmo salar) erythrocytes in vitro and in vivo. A. salmonicida did not kill primary S. salar erythrocytes, even in the presence of high bacterial loads, but A. salmonicida invaded the S. salar erythrocytes in the absence of evident haemolysis. Naïve Atlantic salmon smolts intraperitoneally infected with A. salmonicida showed bacteraemia 5 days post-infection and the presence of intraerythrocytic A. salmonicida. Our results reveal a novel intraerythrocytic phase during A. salmonicida infection.
Asunto(s)
Aeromonas salmonicida/fisiología , Eritrocitos/microbiología , Forunculosis/sangre , Infecciones por Bacterias Gramnegativas/veterinaria , Salmo salar , Animales , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/sangre , Infecciones por Bacterias Gramnegativas/microbiologíaRESUMEN
The genus Edwardsiella consists of bacteria with an intrinsic resistance to cyclic cationic antimicrobial peptides (CAMPs). Edwardsiella ictaluri, a pathogen of the catfish (Ictalurus punctatus) and the causative agent of a systemic infection, is highly resistant to CAMPs. Previously, we determined that the oligo-polysaccharide (O-PS) of the lipopolysaccharide (LPS) does not play a role in the E. ictaluri CAMP resistance and an intact core-lipid A structure is necessary for CAMPs resistance. Here, we evaluated the influence of the outer-core in the CAMPs resistance and fish virulence. E. ictaluri wabG, a gene that encodes for the UDP-glucuronic acid transferase that links the lipid A-inner-core to the outer-core-oligopolysaccharides, was deleted. Deletion of ΔwabG caused a pleiotropic effect, influencing LPS synthesis, CAMPs resistance, growth, and biofilm formation. E. ictaluri ΔwabG was attenuated in zebrafish indicating the important role of LPS during fish pathogenesis. Also, we evaluated the inflammatory effects of wabG LPS in catfish ligated loop model, showing a decreased inflammatory effect at the gut level respects to the E. ictaluri wild type. We conclude that E. ictaluri CAMPs resistance is related to the molecules present in the LPS outer-core and that fish gut inflammation triggered by E. ictaluri is LPS dependent, reinforcing the hypothesis that fish gut recognizes LPS in an O-PS dependent fashion.
Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Edwardsiella ictaluri/metabolismo , Edwardsiella ictaluri/patogenicidad , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Lipopolisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Edwardsiella ictaluri/efectos de los fármacos , Edwardsiella ictaluri/genética , Infecciones por Enterobacteriaceae/microbiología , Ictaluridae , Datos de Secuencia Molecular , Alineación de Secuencia , Virulencia , Pez CebraRESUMEN
Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal mucosa remain unknown. Edwardsiella ictaluri is a primitive member of the Enterobacteriaceae family that causes enteric septicemia in channel catfish (Ictalurus punctatus). E. ictaluri infects and colonizes deep lymphoid tissues upon oral or immersion infection. Both gut and olfactory organs are the primary sites of invasion. At the systemic level, E. ictaluri pathogenesis is relatively well characterized, but our knowledge about E. ictaluri intestinal interaction is limited. Recently, we observed that E. ictaluri oligo-polysaccharide (O-PS) LPS mutants have differential effects on the intestinal epithelia of orally inoculated catfish. Here we evaluate the effects of E. ictaluri O-PS LPS mutants by using a novel catfish intestinal loop model and compare it to the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS. We found evident differences in rabbit ileal loop and catfish ileal loop responses to E. ictaluri and S. Typhimurium LPS. We determined that catfish respond to E. ictaluri LPS but not to S. Typhimurium LPS. We also determined that E. ictaluri inhibits cytokine production and induces disruption of the intestinal fish epithelia in an O-PS-dependent fashion. The E. ictaluri wild type and ΔwibT LPS mutant caused intestinal tissue damage and inhibited proinflammatory cytokine synthesis, in contrast to E. ictaluri Δgne and Δugd LPS mutants. We concluded that the E. ictaluri O-PS subunits play a major role during pathogenesis, since they influence the recognition of the LPS by the intestinal mucosal immune system of the catfish. The LPS structure of E. ictaluri mutants is needed to understand the mechanism of interaction.
Asunto(s)
Edwardsiella ictaluri/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Lipopolisacáridos/inmunología , Lipopolisacáridos/toxicidad , Animales , Bagres , Edwardsiella ictaluri/genética , Inflamación , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , MutaciónRESUMEN
Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.
Asunto(s)
Adhesión Celular/efectos de los fármacos , Crithidia fasciculata/efectos de los fármacos , Crithidia fasciculata/crecimiento & desarrollo , Glucosa/metabolismo , Tunicamicina/farmacología , Transporte Biológico/efectos de los fármacos , Crithidia fasciculata/citología , Crithidia fasciculata/metabolismo , Glicosilación/efectos de los fármacosRESUMEN
Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by Moritella viscosa. Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) M. viscosa challenges and evaluated the immunogenicity of M. viscosa cell components. IgM titers were determined after infection, post boost immunization, and post challenge with M. viscosa. IgM+ (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the M. viscosa outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against M. viscosa strain, and OMVs are the most immunogenic component of M. viscosa cells.
RESUMEN
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Asunto(s)
Riñón Cefálico , Factores Reguladores del Interferón , Poli I-C , Transcriptoma , Animales , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo , Poli I-C/inmunología , Perciformes/inmunología , Perciformes/genética , Perfilación de la Expresión Génica , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Peces/inmunología , Peces/genéticaRESUMEN
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Asunto(s)
Enfermedades de los Peces , Perfilación de la Expresión Génica , Riñón Cefálico , Inmunidad Innata , Renibacterium , Transcriptoma , Animales , Riñón Cefálico/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Renibacterium/inmunología , Renibacterium/genética , Inmunidad Innata/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Adaptativa/genética , Peces/inmunología , Peces/microbiología , Enfermedad Crónica , Perciformes/inmunología , Perciformes/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/genética , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Micrococcaceae/inmunologíaRESUMEN
Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the â¼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.
Asunto(s)
Inmunidad Adaptativa , Aeromonas salmonicida , Cambio Climático , Enfermedades de los Peces , Animales , Aeromonas salmonicida/inmunología , Aeromonas salmonicida/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Hipoxia/inmunología , Inmunidad Innata , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Peces/inmunología , Peces/microbiología , Oxígeno/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Antígenos Bacterianos/inmunologíaRESUMEN
Adult vertebrate cartilage is usually quiescent. Some vertebrates possess ocular scleral skeletons composed of cartilage or bone. The morphological characteristics of the spotted wolffish (Anarhichas minor) scleral skeleton have not been described. Here we assessed the scleral skeletons of cultured spotted wolffish, a globally threatened marine species. The healthy spotted wolffish we assessed had scleral skeletons with a low percentage of cells staining for the chondrogenesis marker sex-determining region Y-box (Sox) 9, but harboured a population of intraocular cells that co-express immunoglobulin M (IgM) and Sox9. Scleral skeletons of spotted wolffish with grossly observable eye abnormalities displayed a high degree of perochondrial activation as evidenced by cellular morphology and expression of proliferating cell nuclear antigen (PCNA) and phosphotyrosine. Cells staining for cluster of differentiation (CD) 45 and IgM accumulated around sites of active chondrogenesis, which contained cells that strongly expressed Sox9. The level of scleral chondrogenesis and the numbers of scleral cartilage PCNA positive cells increased with the temperature of the water in which spotted wolffish were cultured. Our results provide new knowledge of differing Sox9 spatial tissue expression patterns during chondrogenesis in normal control and ocular insult paradigms. Our work also provides evidence that spotted wolffish possess an inherent scleral chondrogenesis response that may be sensitive to temperature. This work also advances the fundamental knowledge of teleost ocular skeletal systems.
Asunto(s)
Condrogénesis , Factor de Transcripción SOX9 , Animales , Factor de Transcripción SOX9/metabolismo , Esclerótica/metabolismo , Temperatura , Inmunoglobulina M/metabolismo , Ojo/metabolismo , Agua/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Cartílago/metabolismoRESUMEN
The genus Edwardsiella comprises a genetically distinct taxon related to other members of the family Enterobacteriaceae. It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus Edwardsiella. In particular, Edwardsiella ictaluri, an important pathogen of the catfish (Ictalurus punctatus) aquaculture and the causative agent of a fatal systemic infection, is highly resistant to CAMPs. E. ictaluri mechanisms of resistance to CAMPs are unknown. We hypothesized that E. ictaluri lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of wibT, gne and ugd eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of ugd, the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. E. ictaluri OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish (Danio rerio) and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in E. ictaluri influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bagres/microbiología , Farmacorresistencia Bacteriana , Edwardsiella ictaluri/efectos de los fármacos , Edwardsiella ictaluri/patogenicidad , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo , Animales , Acuicultura , Edwardsiella ictaluri/enzimología , Edwardsiella ictaluri/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Inflamación/inmunología , Inflamación/microbiología , Uridina Difosfato Glucosa Deshidrogenasa/genética , VirulenciaRESUMEN
Flavobacterium columnare, a fastidious Gram-negative pathogen and the causative agent of columnaris disease, is one of the most harmful pathogens in the freshwater fish-farming industry. Nevertheless the virulence mechanisms of F. columnare are not well understood. Bacterial iron uptake from the host during infection is an important mechanism of virulence. Here we identified and analyzed part of the iron uptake machinery of F. columnare. Under iron-limited conditions during in vitro growth, synthesis of an outer membrane protein of ~86 kDa was upregulated. This protein was identified as a TonB-dependent ferrichrome-iron receptor precursor (FhuA). Synthesis of siderophores in F. columnare was corroborated by chrome azurol S assays. A putative ferric uptake regulator (Fur) protein was also identified in the F. columnare genome. Structural analysis of the F. columnare Fur protein revealed that it was similar to Fur proteins involved in iron uptake regulation of other bacteria. Furthermore, Salmonella enterica serovar Typhimurium (S. Typhimurium) Δfur mutants were partially complemented by the F. columnare fur gene. We conclude that a siderophore-mediated iron uptake system exists in F. columnare, and fur from F. columnare could partially complement S. Typhimurium Δfur mutant.
Asunto(s)
Flavobacterium/metabolismo , Hierro/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , SideróforosRESUMEN
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Asunto(s)
Receptores de Bacteriógrafos , Bacteriófagos , Genómica , Receptores de Bacteriógrafos/genética , Receptores de Bacteriógrafos/inmunología , Bacteriófagos/genética , Proteínas Portadoras , Enterobacteriaceae/genética , Escherichia coli , Filogenia , Fagos de SalmonellaRESUMEN
Ulcer diseases are a recalcitrant issue at Atlantic salmon (Salmo salar) aquaculture cage-sites across the North Atlantic region. Classical ulcerative outbreaks (also called winter ulcer disease) refer to a skin infection caused by Moritella viscosa. However, several bacterial species are frequently isolated from ulcer disease events, and it is unclear if other undescribed pathogens are implicated in ulcer disease in Atlantic salmon. Although different polyvalent vaccines are used against M. viscosa, ulcerative outbreaks are continuously reported in Atlantic salmon in Canada. This study analyzed the phenotypical and genomic characteristics of Vibrio sp. J383 isolated from internal organs of vaccinated farmed Atlantic salmon displaying clinical signs of ulcer disease. Infection assays conducted on vaccinated farmed Atlantic salmon and revealed that Vibrio sp. J383 causes a low level of mortalities when administered intracelomic at doses ranging from 107-108 CFU/dose. Vibrio sp. J383 persisted in the blood of infected fish for at least 8 weeks at 10 and 12 °C. Clinical signs of this disease were greatest 12 °C, but no mortality and bacteremia were observed at 16 °C. The Vibrio sp. J383 genome (5,902,734 bp) has two chromosomes of 3,633,265 bp and 2,068,312 bp, respectively, and one large plasmid of 201,166 bp. Phylogenetic and comparative analyses indicated that Vibrio sp. J383 is related to V. splendidus, with 93% identity. Furthermore, the phenotypic analysis showed that there were significant differences between Vibrio sp. J383 and other Vibrio spp, suggesting J383 is a novel Vibrio species adapted to cold temperatures.